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FOREWORD

This report was prepared by the Solid State Research Center, HUGHES

AIRCRAFT COMPANY, Newport Beach, California, on National Aeronautics

and Space Administration Contract NAS lZ-5 "Development of a Thin-Film

Space-Charge-Limited Triode". This work was administered in the Electronic

Research Center of NASA, Cambridge, Massachusetts, under the direction of

Mr. J. Lowen.

This report describes the development effort and the electrical evaluation of a

thin-film space-charge-limited triode begun in March 1965 and concluded in

June 1966 by the Solid State Research Center of HUGHES AIRCRAFT COMPANY.

The principal investigator of the contract studies was Mr. R. Zuleeg and the

authors of this report are Mr. R. Zuleeg and Dr. P. Knoll. Others who

contributed to the work reported on, are: Mr. R. J. Belardi, Mrs. A. P. Brown,

Mr. N. Nicolson, Mr. F. A. Rhoads, Mr. J. F. Ryan, Miss E. J. Senkovits,

Mr. M. Siracusa, and Mr. R. P. Torah.

This report was submitted June 1966.



PROGRAM OBJECTIVES

The objective of this contract was to develop a practical thin-film space-

charge-limited triode based upon the theoretical concepts of G. T. Wright,

which were published in the Proceedings of the IEEE, November 1963,

pp. 1642-1652 under the title "Space-Charge-Limited Solid-State Devices".



ABSTRACT

Experimental and theoretical research and development on a thin-film space-

charge-limited triode is presented. This includes, experimental results of

thin-film CdS-Si and GaAs-Si heterojunction transistors operating under space-

charge-limited emitter current; a method to determine the density of states at

a heterojunction interface; the design and electrical measurements of a thin-

film space-charge-limited triode in the dielectric surface gate structure employ-

ing the silicon-on-sapphire technique; the film properties of CdS, GaAs, and Si;

correlation of electrical results with the device physics and structure and

finally discussion and conclusions based upon the electrical characteristics

established with the device structures fabricated.

The limitations of the device structures investigated are assessed with respect

to frequency and temperature of operation and the results extrapolated to device

structures feasible in the near future by employing improved photolithographic

and material technology.



SECTION A

GENERAL DISCUSSION OF SPACE-CHARGE-

LIMITED DEVICES AND THEORY
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A) GENERAL DISCUSSION OF S_ACE-CHARGE-LIMITED DEVICES

AND THEORY

Space-charge-limited current is a majority carrier current, when double

injection operation is excluded, which leads to nonlinear behavior. The

discussion will be concerned only with space-charge-limited devices regarded

as a majority carrier device. Since we consider only linear devices, e.g. those

with a power gain, a space-charge-limited triode should be defined by, and

confined to: a three-terminal semiconductor device, which operates under

space-charge-limited current condition, whereby the space- charge-limited

current is modulated by means of a high impedance gate or grid. This is to

say, the gate terminal essentially does not draw any direct current and exerts

only a field-effect control mechanism upon injected majority carriers. These

carriers under space-charge-limited condition are presented above the value

of the thermally generated carriers in the material under question. The fore-

going statement is conditional for space-charge-limited currents, which

commence only when the ohmic currents are smaller thanthe induced space-

charge-limited currents in the material. In accordance with this definition of

space-charge-limited currents and confining the operation to majority carriers

only, the foll_wing classes of space-charge-limited solid-state devices can be

derived:

Class I: The devices of this class operate under space-charge-limited

conditions over a fixed geometrical distance, L . With charge control
O

exerted from a high impedance terminal (= grid or gate) the following

general voltage-current characteristics are expected:

IDRAIN = 8L 3 VG + _ (1)
O

Class 2: The devices operate under space-charge-limited current

conditions over a variable distance Lv = Lo + L (VG). With charge control

exerted from a high impedance terminal (grid or gate) the following

general voltage-current characteristics are expected:

-Z-



9¢E _A VD 2
O

IDRAI N = 12)

8 o + L _VG_

Class 3: The devices operate under space-charge-limited current

conditions over a fixed distance L . With charge control mechanismo

from a high impedance terminal (= grid or gate) the cross sectional area

A is made variable to the majority carrier flow prior to entering the

material carrier space-charge-limited current. The following general

voltage-current characteristics are expected:

2
9E eo _.V D

IDRAI N = A (VG) (3)
3

8L
O

All devices of these three classes show theoretically the characteristic vacuum-

tube triode voltage-current relations with exponential power relation, e.g.

power of 2 for the ideal solid-state device and power of 3/2 for the ideal vacuum

triode.

The ideal device of Class 1 was first proposed by Wright (1) and employs the

insertion of a metallic grid or gate between the plane parallel electrodes

designated drain and source (see Figure la). This device has never been realized

in practice, although progressing advances in thin-film material and micro-

circuitry technology make this device feasible in the near future. Ion implantation

techniques especially could be very advantageous in the construction of such

a device.

A modification space-charge-limited triode according to the Class 1 classification,

circumventing certain fabrication difficulties of the ideal device as described

above, but leading to a somewhat difficult geometry for a theoretical analysis,

was successfully demonstrated by Zuleeg (2) and theoretically analyzed by Wright (3).

This thin-film space-charge-limited triode was fabricated in a structure shown

in Figure lb by using polycrystalline CdS. This structure is now feasible in an

improved version by employing the silicon-on-sapphire growth technique.

-3-



0

A

!

<

L)
I

L)
<

oO

0

ra_

U

Z

<O--

Q_

mm

Z
I--I

<O--

A

--I-,

\%

L_

<
0

<

I

[
Z

I
I •

_/ 0

,4, 0

., :m _ 0

_,_ _ Z

I

O_

H _< L)
< uF, <
0 OZ
0 ao z
• _0 0

/ o

Z

<0---

I--I

0
!

+

• _I _ _

<'I "_'..\',,b,

\'i.. ,.-_-, -, \

\'I_ t\\",[',, o

,'<...... _ o

2_
A

'-" ,,\_1, '
_m + ,.\I_ '

0 -- ,\_o'

z _-'<
I '.\.,

2;'

r_ #\ ,+

_0___ z'\_

0 ,0 x.\ \

<

0
_O

...-...

"0

A

,.Q

,--,l

(I)



Figure 2 demonstrates a practical structure which was fabricated at the Hughes

Solid State Research Center prior to the contract award. This device has been

further developed and studied under this contract. The typical triode character-

istics of such a device with a transconductance of 1,000_ mho is also shown in

Figure 2. The structure was investigated in respect to gain and frequency

response and holds great promise_ as a high frequency thin-film device when

possible improvements are considered in regard to geometry and material.

A device of Class 2, and the only one fabricated so far in monblithic construction, •

was fabricated also at the Hughes Solid State Research Center and described by

Zuleeg (4). A basic structure of this device, which possesses a spatially extended

multi-element grid structure in the solid, imposed between two, plane parallel

electrodes, designated source and drain is shown in Figure lc. This device is

very promising in respect to low-noise amplification properties {5), but cannot

be easily adapted to thin-film fabrication methods. It is primarily a bulk device.

One possible thin-film structure is shown in Figure ld, which could be made by

using the silicon-on- sapphire technique, but considerable improvement in the

crystal perfection of the silicon film grown by heteroepitaxy has to be accomplished

before an attempt in fabrication can be made. A device belonging to Class 3 was

described by Shockley {0) but no experimental construction was reported. The

basic structure of this device is shown in Figure le.

The space-charge-limited dielectric triode, with actual pent0de-like character-

istic, as proposed by Wright (7) is a mis-nomer and should correctly be called

a heterojunction or wide-gap emitter transistor operating under space-charge-

limited emitter current condition. Experimental results on this heterojunction

transistor employing a CdS-Si junction have been published by Wright {8) and

Page (9). The heterojunction transistor characteristics with a CdS-Si and witha

GaAs-Sf heterojunction are reported and discussed in this final report. Both

heterojunction devices should be placed into the category of the bipolar transistor,

since majority and minority carriers are contributing to satisfactory operation

of the device. Only in the ideal case, with no recombination at the heterojunction

interface due to states, e.g. injection efficiency equal to unity, and no re-

combination losses of injected minority carriers in the base region during

transport, e.g. transport efficiency equal to unity, could one claim a majority

-4-
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carrier device and classification as a space-charge-limited triode. In all

practical cases this device structure will manifest a bipolar transistor operational

mechanism with finite base current flow. It should therefore be treated as a

normal PN-junction transistor and as a current amplifier, rather than a high

input impedance voltage amplifier.
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B) THE HETEROJUNCTION TRANSISTOR

l) CdS-Si Heterojunction Transistor

The space-charge-limited triode first investigated under this contract was

proposed by Wright (7) (3). Advantageously it uses a heterojunction gate for

charge control exertion and achieves non-reciprocal carrier transmission. In

the ideal case, with no recombination in the heterojunction gate :or at the

heterojunction interface, a true majority carrier device would be the result.

How close this ideal condition could be met in practice was investigated in the

course of this contract and experimental results were correlated with theory.

The physical structure of the space-charge-limited triode is shown in Figure 3a.

The substrate on which the devices were constructed consisted of a low resis-

tivity N-type silicon slice, with an epitaxially grown N-type layer of approximately

0.8 to 1.012cm resistivity and about 4 to 6 microns thick. The ohmic contact

to the header was made with a Sb-Sn preform. The N +, i• e. ohmic contact,

served as the drain• A thin, high conductivity P-skin of 0.5 micron depth was

produced by diffusion of boron to act as the gate. A thin-film of high resistivity

( > 10412cm), N-type CdS or GaAs was then deposited by evaporation {see Section

D). Ohmic contacts to CdS were provided by evaporating a thin layer of indium

and alloying at 160°C. The originally used structure is given in Figure 3c, which

is a mesa structure and in the course of the development was replaced by the

planar structure shown in Figure 3d.

The band structure of the triode is sketched in Figure 3b when the device is biased

for normal operation. The conduction band discontinuities at the CdS and GaAs-

Si heterojunction, A E are estimated to be in the range of 0.4 to 0 6 eV. The
C' •

nature of the interface, of course can significantly contribute to the actual

values of AE and A E . If the potential difference between source and gate
C V

produces space-charge-limited current, then electrons are injected into the

thin gate region which is equivalent to the base-region of a bipolar NPN transistor.

This current is equal to:

2
9s_ _A (V G - Vo)

IG = o
8 L 3 (4)
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and is transferred to the high impedance and back-biased drain PN-junction.

The drain current is then given by the relation

I D = a I G (5)

where a is defined as the interfacial transmissivity for the electrons through

the heterojunction gate, a is usually smaller than one if losses of the electrons

arriving at the heterojunction interface or in the diffused P-region occur,

Although the probability of hole injection into the wider gap material is theoret-

cially very small because of the large discontinuity in the valence band at the

interface and by the electric field in the depletion region between gate and drain,

minority carrier action and a < l can result from recombination of electrons

at the heterojunction interface and during transport through the diffused P-region,

All these effects may be combined in the parameter a.

Insertion of Equation 4 into Equation 5 yields the drain current in saturation,

IDS, equal to

2

9Es ° _A(V G - V o)

IDS= a 8 L 3 (6)

which is independent of drain voltage V D. The high output impedance of this

device results from the complete isolation of output from input, because the

gate layer provides excellent electrostatic screening of the source-gate region

from the gate-drain region.

According to theory then, the device should have a linear gain function, e.g.

the transconductance, gm' is a linear function of the applied gate voltage, V G.

Differentiation of Equation 6 in respect to V G yields

_A - V o)d IDS 9¢ s o (VG

gm- - a L3 (7)
d V G 4

-8-
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Space-charge-limited triodes have been fabricated using the CdS-Si hetero-

junction by employing the mesa structure given in Figure Bc. Other invest_

igations have already reported in the literature on such a device (8) (9) The

devices were mounted on T0-5 headers and electrically evaluated. Figure 4

gives grounded source characteristics resulting from a voltage and a current

driving source and a grounded gate characteristic resulting from a current

driving source to obtain the actual electron transrnissivity. For device N-19

in Figure 4 we obtained a = 0.8, which corresponds to a _ = 4 for a bipolar

transistor and a transconductance gm = 2 mA/V. The input capacitance of

the device, constant and independent of current, was 75 pf so that the calculated

gain-bandwidth product is equal to

grn

G. BW- 2 7r C. : 4.2 MC (8)
in

Frequency response measurements indicated a value of 1 to 2 MC.

1/z
A plot of IDS vs. V G in Figure 5 confirms the square law characteristic

according to Equation 4. The threshold voltage is about l volt and a = 0.8.

The computed mobility in the CdS film is about 7 cmZ/V sec. The output

differential resistance was equal to 500 K_. The linearity of transconductance

or gain versus input voltage V G is shown in Figure 0. The ratio of the slope

of the straight line portions in Figure 5 and Figure 6 should ideally give 2

and the expei'imental data yield i. 7. On the test stand (probe measurements

of voltage-current output characteristics) an electron transmissivity as high

as 0.9, corresponding to _ = i0 and gm = 5 mA/V, has been measured. During

mounting on the headers and lead attachment by alloying, consistent degradation

of the electron transmissivities were experienced. It was found, that the

contact to the thin-film structure introduced stresses which damaged the

heterojunction diode.

The planar structure was adopted, therefore, which brings the contacts out

over the SiO 2 layers. During lead attachment no pressure has to be exerted

on the thin-film structure.

-9-
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2) GaAs-Si He t e r_oj_u_nctl _on Tr an s i_s_tor

a) GaAs-Si Heterojunction Diode Evaluation:

The GaAs-Si heterojunction diode to P-type silicon was studied in detail. This

diode structure is essentially the one employed for the heterojunction transistor,

which should operate under space-charge-llmited current conditions of the

emitter diode.

Two different modes of current flow in diodes made from GaAs films deposited

at 400°C and 500°C were obtained. It was realized, that either a Schottky

barrier or a space-charge-limited diode could be fabricated depending upon the

electronic properties of the Ga_A_s film and the GaAs-Si interface. Results of

subsequent studies concerning the metal contact properties to the GaAs film,

showed that the type of diode, e.g. Schottky or space- charge-limited, is not

entirely deterinined by the properties of the GaAs film, but depends also on

the metal contact formed with the GaAs film. The deposition temperature of

the GaAs film may have a lesser influence on the different mode of current

flow, but could be more important in the metal contact formation to the film

itself. Figure 7 shows voltage current characteristics of identical films of

GaAs but provided with two different metal contacts. One diode was made with

SnAu and the other one with SnNi contacts. The shift along the voltage axis at

a constant current level indicates, that the SnAu contact possesses a higher

voltage drop. The established Schottky relation of the voltage-current character-

istic arises from the barrier, 42, at the GaAs-Si interface (see Figure 10).

Depending upon this barrier height, the voltage current characteristic is

composed of two distinct regions. As a consequence, current at small forward

voltages is controlled by thermal diffusion over this barrier and for V>> kT/q

this is described by

[ ]q(¢ - V)

= exp - (9)
J Jo kT

-I0-
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where

J = 4 7r m* qk 2 T 2/t_ 3
O

(10)

and indicates that the current should increase exponentially with voltage. This

exponential relation is shown in Figure 8 in the low voltage region. The

extrapolated intercept of this straight line upon the ordinate occurs at a

current value corresponding to V = 0 in Equation 9 and provides a measure for

4p . Values of _ obtained in this way range from 0.5 to 2. 5 eV. The method

is not very accurate, but the result agrees in general with values of 4p

determined by other methods, which will be given in the following section.

At larger applied voltages, greater than the potential step _, the Schottky

barrier is gradually lowered and the current becomes space-charge-limited.

It follows the square law relation of Mott-Gurney:

2
9ee _(V-Vo)

j=_ o
8 L 3 111)

In this expression V ° is a threshold voltage, which is a function of # and is

also related to the trap density in the material. See Figure 9 for the reverse

and forward current voltage characteristic. A tentative band structure model

of the thin-film GaAs-Si heterojunction is shown in Figure 10. The existing

barrier height, 4p , at the GaAs-Si interface has to be surmounted by electrons

before entering the P-type silicon as injected minority carriers. If the film

is of sufficiently high resistivity, the electron current will eventually predominate

at increasingly higher applied voltages between the metal and P+ silicon contact,

so that space-charge-limited current will commence, i.e. limited by the

capacitance of the metal-semi-insulator-semicondcutor sandwich. In order to

improve the space-charge-limited current operation of the structure under

discussion it is therefore necessary to

a) Lower the barrier at the GaAs-Si interface

b) Improve the GaAs film properties, e.g. higher mobility

-11-
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Figure 9 gives the voltage-current characteristic of diode N43426, typical

for GaAs films deposited at 500°C. The GaAs films made at this temperature

have a larger cyrstallite size and, therefore, higher mobility and possibly

higher resistivity, since space-charge-limited current operation is possible.

The resistivity is estimated to be 10612ca. A voltage-current measurement

at room temperature of this diode is presented in Figure 9 on a log-log scale.

Lampert has given the theory for space-charge-limited currents in the presence

of a single trap-level and we can readily apply this theory to a model for current

flow in semi-insulating GaAs films. At low voltages any ir_ected charge is

trapped and to a good approximation Ohm's law is obeyed. At high voltages

space-charge due to traps is small compared with that due to injected carriers

and the variation of current with voltage is given by the Mott-Gurney relation,

e.g. solid-state analog of Child's law, in the form of Equation _1.

The ohmic and space-charge regions are connected by a region in which the

current increases rapidly by an exponential relation of I oc V m over a small

change in voltage with m usually larger than 3. The voltage at the onset of

space-charge-limited current, which was defined by Lampert as the "trap-

filled-limit voltage", is just the change in potential produced by the space-

charge of the filled traps, that is

V o = VTF L =
q N T L 2

_EE
0

From Figure 9 we obtainVTF L = 1.5 V and with L = 1.5 x 10-4cmthe trap

density can be calculated from the above equation and is equal to

15 -3
N T = Ixl0 cm

Using the slope of the space-charge-limited current relation above VTF L

and Equation 11 yields an effective electron drift mobility of

Lt _---
• e

O. 15 cm2/V sec.

This rather low value of mobility is not too surprising if we consider the

polycrystalline structure of the film with small crystallite sizes. From

-12-



temperature measurements of space-charge-limited current above VTF L

at a fixed voltage the temperature behavior of the mobility can be obtained.

These measurements on diodes and prepared Hall samples indicated a

mobility increase With increasing temperature according to an exponential relation

[E](T) = _o exp - -k-T

where E is an activation energy assigned to the :,hopping" process for electrons

in the polycrystalline film. A lower bound for the resistivity of the films can

be estimated from the mobility value and the argument that the free charges.

N D, should be less than the trapped charge density. Therefore

1

p>
q NT _e

which gives p > 2 x 104_cm.

The semi-insulating properties of the GaAs films can probably be ascribed to

a deep acceptor level which compensates a shallow donor level of original

and residual impurity. It is known from single crystal GaAs, that under the

condition in which oxygen is present during the presentation high-resistivity

and insulating material is obtained. Since during vapor deposition of the films

at I0-6 tort still enough oxygen is present in the vacuum chamber to react with

the GaLAs during deposition, this compensation mechanism is most likely to occur.

The presence of the barrier height has been ascertained by two other methods,

namely by the incremental capacitance measurement and photoelectric

measurements.

The behavior of an ideal dielectric diode has been discussed by Shao and Wright {I0),

According to theory, the reverse bias incremental capacitance is equal to the

geometrical electrode capacitance

z¢ A
O

c o = {Iz)
L

-13-



and the forward bias incren-_ental capacitance is equal to

3
CF = "T Co (13)

The presence of the Schottky barrier results in a large incremental capacitance,

because the applied voltage is developed across the barrier rather than across

the full thickness of the GaAs film. A representative measurement is shown

in Figure 11. At high reverse voltage the measured capacitance approaches

the geometrical capacitance. Also at high forward bias, when space-charge-

limited current operation is attained, the measured capacitance approaches

the three-quarter value of the geometrical capacitance. The incremental

capacitance of a contact area A is given by the well known Schottky relation

qsE NDAZ ] I/Z

C = o (14)
z (v + v B)

A plot applied voltage, V, versus 1/C z is shown in Figure lZ. The linear

relation observed around the zero bias region between applied voltages and

the inverse square of the capacitance confirms that the Schottky barrier exists

as described in Figure 10. The density of the ionized donors, ND, can be

obtained from the slope of this graph and is given by

ND = 2- ( AV t = Z x 1015 -3qss A2- h I/C 2 cm (15)
O

The extrapolated intercept of the straight line, 1/C z versus V, on the abscissa

measures V B, the built-in potential rise through the Schottky barrier under the

condition of thermal equilibrium. The measurement indicates V B = Z. 4 eV.

Photo-electric measurements were performed at the Hughes Research Laboratory

(Malibu) according to a method which was successfully applied to measure the

-14-
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barrier height of A1-A1203-A1 thin-film structures {11). This measurement

gives the open circuit photo voltage as a function of photon energy and is

presented in Figure 13. It clearly shows the barrier height of about 2.4 eV.

The relative response indicates also the bandgap of Si at 1.1 eV and GaAs

at 1.5 eV. If the barrier would not be present the response curve would drop

sharply at about 1.4 eV. A typical ideal response curve was reported by

Anderson (12) for a Ge-GaAs heterojunction, which shows a broad maximum

between about . 83 and 1.4 eV. The decrease to low values in the high energy

region occured at a value of 1.55 eV instead of the expected value of the GaAs

bandgap (1.36 eV). The deviation of the relative photoresponse of the thin-film

GaAs-Si heterojunction from the ideal curve, is therefore attributed to the

formed barrier between the GaAs and Si. This barrier height determination is

in good agreement with the built-in potential measurement and correlates well

with the barrier height estimated from d-c measurements Using Equation 9.

Negative resistance characteristics have been observed with diodes made on

N-type silicon material. This negative resistance characteristic was not light

sensitive and was observed also by Nizushima et al (13) on very high resistivity

GaAs films. The same investigators (14) analyzed the breakdown and concluded,

that field ionization is the origin of this phenomenon. With improved GaAs

films, a negative resistance is frequently observed on GaAs diodes made on P+

material. It is believed, that this is a true double injection, since

a) it is very light sensitive

b) heterojunction transistors with this kind of emitter diode have no

current amplification until the current jumps to the higher current values.

A typical voltage-current characteristic of such a diode is shown in Figure 14

with and without illumination from a focused microscope lamp. Since the

voltage-current characteristic after the appearance of the negative resistance

shifts, modulation of the bulk conductivity is present. A heterojunction transistor

with such an emitter diode, has usually very low gain up to the onset of the

negative resistance region and with sufficient alpha, e.g. greater than 0.5,

breaks into oscillation. This oscillation extinguishes, when the base current

is increased and normal transistor action takes place. The negative or double

injection characteristic can be explained as follows: Assuming a Schottky barrier

at the GaAs-Si interface, with the metal contact at a negative potential, electrons

-15-
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are _jected into the Si at reasonable voltages. However, before sufficient

electron current is established in the GaAs film, the P+ silicon contact to the

other side of the GaAs film will inject holes from the large reservoir, (e. g.

P-type doped silicon of 5 x 1018 -3cm ) of higher density than the electrons

injected over the Schottky barrier. At higher voltages, electron transport will

dominate, when a sufficient lowering of the barrier for electrons is encountered.

b) GaAs-Si Heterojunction Triodes:

With a diode characteristic similar to N86-4 in Figure 9 space-charge-limited

triodes should become operational. Devices with the planar structure were

fabricated. However, no acceptable devices with electrically good heterojunctions

could be obtained at first. Investigations revealed that

i) the GaAs heterojunction to nearly degenerate P+ surfaces of silicon
-B

with a surface concentration of 1019cm does not give good rectification

characteristics.

ii) during the GaAs deposition at 500°C the protected silicon PN-junction

is contaminated and becomes very leaky.

The following corrective measurements were carried out

1) the surface concentration of the shallow diffused P-region was

1018 -3lowered to values between I and 5 x cm A more advantageous

value would be around 5 x i017cm -3 but could not be obtained so far
P

from our diffusion group.

2) the silicon PN-junction was protected prior to GaAs deposition with

a thicker layer of SiO Z, which is also terminated about 5 mils away from

the junction periphery instead of the Z - 3_ protection in the original mask

design, This required a new oxide growth after the P-diffusion and

additional window opening.

As a result of these changes, stable operational devices were fabricated.

The GaAs-P(Si) heter _'vJu.*_--o+_.o-diode of t_=n_i_tnr N-f18 is shown inFigure 15,

plotted as I I/2 versus V. The straight line relation above I volt reveals

the square law of space-charge-limited current. Trap-filling is completed at

-16-
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about 1 volt. The deviation from the straight line above 5 volts is due to the

voltage drop across the base spreading resistance. This resistance can be

calculated and is in the order to 200_. This value is also predicted from the

geometry and the sheet resistance R D of the diffused layer, which was 1880_] .

From the geometry (see Figure 19) one can approximate

s
R b = (16)D

where S is the spacing between the Al base contact and D is the diameter of the

P-diffusion area. With S = 5 mils and D = 50 mils one obtains a value of 180_.

The transfer characteristic of the space-charge-limited emitter current to the

collector, measured in saturation at constant vottage of 10 volts is shown in

Figure 16. This current should be equal to

9 Ec _A
o 2

ID = a 8 L 3 (VG - v°) (17)

a straight line relation above two volts in the plot of ID 1/2From
, versus VG,

the square-law is revealed. Figure 17 gives the curve tracer:output character-

istics of triode N-118 in grounded source with voltage and current drive,

Figure 17a and 17b respectively. The maximum transconductance is . 4 mA/V.

The maximum base current amplification factor p = 3 when considering the

device as a bipolar transistor. Figure 17c then gives the grounded gate,

corresponding to a grounded base operation of a bipolar transistor, and reveals

an a = 0.7.

This interfacial transmissivity, a, for the electrons through the heterojunction

gate is very encouraging, when considering the possible improvements arising

from a lower surface concentration e.g. 5 x 1017 -3cm , which would diminish

the loss of electrons by recombination in the thin P-layer and from optimized

GaAs film deposition to reduce interface states. Lowering of the transmissivity

is primarily due to recombination at the heterojunction interface. To demonstrate

this recombination effect upon the injection efficiency and transmissivity, m, an

energy band diagram of the GaAs-Si NP-junction is shown in Figure 18. If

recombination throughout the depletion regions is assumed to be negligible,

-i7-
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GaAs-Si SCLC-TRIODE (N-II8)

A

Grounded Source VDID- Characteristic

gmax - "4mA/V

V D horizontal ZV/DIV.

ID vertical .ZrnA/DIV.

+ IV/STEP gate voltage

B

Grounded Source VDID- Characteristic

V D horizontal ZV/DIV.

ID vertical .ZmA/DIV.

+ .lmA/STEP gate current

C

Grounded Gate VDI D - Characteristic

¢_ = .7

V D horizontal ZV/DIV.

ID vertical 0.5mA/DIV.

- 1 mA/STEP source current

Figure 17
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then only the charges N 1 and P1 could flow. Due to the wide gap emitter effect,

i.e. the much smaller barrier height for N 1 the electron current proportional

to N 1 would predominate and P1 the hole current would tend to become zero,

so that

N 1
•r = _ 1 (18)

N +P
1 1

if Pl is small.

If, however, recombination of electrons and holes takes place near the hetero-

junction interface in a layer of states near the center of the energy gap, then

the current could consist of an additional electron current N 2 into the states

from the left and a hole current P2 into the states from the right. The

transmissivity is then given by

N 1 - N Z
T : (19)

N I - N2 + P2

If we assume, that N 2

N 2
T = 1

N 1

: PZ' then Equation 19 reduces to

(20)

For a triode with transmissivity approaching one, the loss current N 2 has to

be reduced. For the device N-118, whose characteristics are shown in

Figure 17, the loss current would amount to 30% of the total emitted current

N O . This would be true, if no additional losses would take place during the

transition of charge carriers across the P-region. In general then

(1 : T_

where _ is the normal base transport factor.

(Zl)

It is approximately given by

- -- (22)

2 L n
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where L n is the diffusion length for electrons,

of the P region.

and W is the effective width

A top view photograph of a planar thin-film space-charge-limited triode of the

present design is shown in Figure 19. A cross section through this device is

shown in Figure 3d. The ohmic contact to the silicon P-layer is made by an

evaporated aluminum contact. The ohmic contact to the GaAs film is a tin-gold

evaporated contact. Thermocompression bonding is not directly applied to the

active area of both contacts. The bond is made to the portion of the contact

brought out over an oxide layer. This design assures reliable and non-damaging

contacts in respect to the thin-film GaAs-diode and the thin diffused P-region.

The GaAs-Si heterojunction transistor was investigated in respect to recom-

bination losses. It was possible to fabricate with consistent yields transistors

with current amplification factors between 1 and 5, when mounted on headers

and transistors with beta's as high as 10 when tested by point contact probes on

the original silicon wafer after completing processing. Figure 20 is a photo-

graph of Z0 GaAs-Si heterojunction transistors which are processed by employ-

ing planar silicon technology and vapor deposition of a DaAs-film to form the

heterojunction of GaAs to Si. The structure is described in Figure 3. A typical

grounded emitter voltage-current characteristic of devices under investigation

with a beta equal to five is shown in Figure 21. In general, the devices indicate

a beta versus collector current behavior similar to homojunction, bipolar

transistors. At low collector currents the amplification is low due to recom-

bination losses at the surface and interfaces. It then rises to a maximum in a

current range of 2 to 10 mA and above this peak value starts to decrease probably

due to crowding effects. Since the amplification factors were so consistent,

investigation was made as to whether or not the impurity distribution in the

silicon P-type base and the surface preparation of the silicon prior to the

deposition of the GaAs-film has influence upon the amplification properties.

The base width was changed from 0.5_ to about 2_ and the surface concentration

1019 18 -3varied from 5 x to Z x 10 cm with no noticeable changes in amplification

properties. Perhaps the changes are small and of second order, with first

order effects ascribed to recombination losses at the GaAs-Si interface. Prior

to GaAs-film deposition, the silicon surface was cleaned:
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GaAs-Si HETEROJUNCTION TRANSISTOR

GROUNDED EMITTER CHARACTERISTIC

SCALES:

Vert. Collector Current IC in 0.5 mA/DIV.
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a) with hot HC1 etch in an epitaxial reactor

b) by standard chemical means, e.g. CP 4

and no significant improvements could be obtained. Another investigation was

carried out, which also did not result in noticeable improvements. The

investigation was concerned with different silicon base materials, that is,

epitaxial material compared to parent silicon material from a single crystal

ingot and silicon material with and without the diffused base. The purpose of

these experiments was to see if different surface conditions would result in

better GaAs nucleation and consequently fewer surface states. All experiments

turned out to give negative results, which indicated, that the recombination

mechanism at the GaAs-Si interface is the determining factor for the electrical

functioning of the heterojunction transistors. Figure 22 shows a set of grounded

base and grounded emitter characteristics for a device with an alpha of about

0. 6. This device was made with a base diffusion, whereby punchthrough to the

emitter occurs before breakdown of the collector-to-base PN junction. The

punchthrough to the emitter depletion region is 45 volts. Beyond this voltage,

bipolar transistor operation is not possible, since alpha becomes unity and in

grounded emitter configuration voltage saturation occurs (= breakdown). It

should be noticed, that after the onset of punchthrough a considerable voltage

has to be added, before the alpha becomes unity. The range of this incremental

voltage indicates the amount of band bending and the presence of interface states

at the GaAs-Si before the actual punchthrough to the GaAs emitter region occurs,

at alpha equal to unity, at approximately 55 volts. This experimental result,

when compared with behavior of homojunction transistors, establishes without

doubt the deleterious effects and consequences of heterojunctions when employed

for the construction of bipolar transistors. Owing to the unavoidable interracial

states in heterojunctions, band bending effects and recombination of excess

minority carriers are expected. The evidence in our investigation is the consistent

reduction of alpha to values of 0.5 to 0.8 and the absence of minority carriers

storage effects. A typical switching characteristic of a GaAs-Si heterojunction

transistor is shown in Figure 23. The transient effects are mainly determined

by charge and discharge of the interface-states and override completely the

charge effects in the base and in the collector region of the device, which are

much shorter. The switching speed and high frequency performance of the present

devices is therefore a function of the emitter time-constant. The advantages of

-20-



GaAs-Si HETEROJUNCTION TRANSISTOR

N - 147

GROUNDED BASE CHARACTERISTIC

S CALES:

Vert. Collector Current in 0.5 mA/DIV.

Horiz. Collector Voltage in 5 V/DIV.

Emitter Current in 1 mA/STEP

GROUNDED EMITTER CHARACTERISTIC

SCALES:

Vert. Collector Current in 0.2 mA/DIV.

Horiz. Collector Voltage in 5 V/DIV.

Base Current in 0. l mA/STEP

Figure 22
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a high emitter cut-off device (15' 16) cannot be realized until ideal space-charge-

limited emitter diode operation is achieved. Oldham and Milnes (17) have

shown theoretically, that dislocations alone resulting from a mismatch of 0.05

percent in the lattice constants of the two single crystal semiconductors would

lead to minority carrier transmission coefficients of 0.3 to 0.6. Since the

alpha of a wide gap emitter of heterojunction transistor cannot exceed this minority

carrier transmission coefficient in the absence of multiplication, it is concluded,

that efficient operation of heterojunction or wide-gap emitter is very unlikely

to be achieved with the variety of known semiconductors and the various pre-

paration techniques available today. If the lattice mismatch in percent is defined

by (17)

Z(Xz-X 1)
LM = x 100 (23)

kl÷k 2

where X 1 < k 2 and the k Is are the respective lattice constants for the two

semiconductor materials forming the heterojunction, we can compute the follow-

ing values

Hetero junction LM

Ge-GaAs 0.07%

Si-GaAs 2.00%

Ge-Si 4.00%

Since Ge-GaAs gives the best lattice match and even for this case the minority

transmission coefficient was estimated to be in the range from 0.27 to 0.58 (17),

the Si-GaAs heterojunction should be worse. No matter what heterojunction

construction is used, the lattice mismatch would produce at least 5 x 1013 cm -2

dangling bonds in single crystal junctions. Bardeen (18) has shown that surface
13 -2

state densities in the order of 10 cm or greater are sufficient to dominate

metal semiconductor barrier formation. Since the densities of these interface

states will large!y deter_mine the position of the Fermi level at the heterojunction

interface we are confronted with two major effects, when heterojunction operation

is considered:
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a)

bl

bending of bands at the heterojunction, as shown by Oldham and Milnes (17)

recombination losses at the interface due to interface states as indicated

by the absence of minority carrier storage in Si-Ga_As heterojunction

diodes and transistors, as verified by experiment during this contract.

The results of alpha's as high as 0.9 experimentally achieved with the GaAs-Si

heterojunction transistor seem to indicate, that the interface states may not be

as deleterious to the operation of heterojunctions as predicted by Oldham and

Milnes {17). This statement is supported by the fact, that the GaAs-Si hetero-

junctions under question are not really single crystal junctions, although the

GaAs .film is highly oriented in the (111) plane but of polycrystalline structure,

containing therefore in addition to the dislocation states an excess amount of

other defects at the interface. Theory and experiment of interfacial states,

although not in very good agreement, have established the importance of the

mere presence of states to the operation of heterpjunctions. The ideal hetero-

junction band structure as shown in Figure 10 (solid lines) warrants a closer

examination and the band bending could be as shown in the dashed lines. This

band shaping could also be inferred from measurements on n-n and p-p hetero-

junctions consisting of various semiconductor materials with different lattice

mismatchings and was discussed and experimentally verified by Oldham and

Milnes (17) and other investigator s { 19, 20).

In analogy to bipolar transistors, the frequency response can be characterized

by the frequency fT' where beta has obtained a value of unity. This frequency

is given by

1
fT = (24)

Z _r (T e + Tb)

where

rd)2_ 4 l e (25)
Te 3 _ }_e Ve

and

2
db

Tb = (26)
_b Vb



Assuming for comparison, that de = d b, the ratio of the transit-times is

"re - ! ( }_b Vb 1v b 3 . _e Ve
(Z7)

, > > V b, a real highThis relation indicates that for _b = _e and since V e

frequency response could be achieved with the heterojunction transistor in view

of "r e < < T b. Only the base-transit time has to be taken into consideration.

This theoretical argument for the heterojunction transistor is in contrast to the

, > Tb and the transistor is saidbipolar transistor frequency response where v e

to operate in the emitter cut-off region. The actual heterojunction transistor

however has an effective mobility _e' which is much smaller than _b' so that

Te > v b and it also operates in the emitter cut-off region. For a numerical

lO00cm 2 cm 2 " = Zvolts,example, we select _b = /V sec. , _e = 1 /V sec., V e

and V b = O. 2 volts, which was obtained from the relation for the built-in drift

field voltage

Vb _ kT In (28)
q

1018 -3with N E = 5 x cm and N C 1 x 1015cm -3= , so that finally

T
e

~ 13
T b

With low mobility films of GaAs or CdS, it is therefore not possible to realize

the high frequency operation of the heterojunction transistor and the device

operates similar to the bipolar transistor int he emitter cut-off region. Since

both types of transistors, namely the homojunction and the heterojunction bipolar,

operate in the emitter cut-off region it is instructive to look at the respective

emitter time constants. For the normal bipolar transistor

kT
TeN = r C - CeN (29)

e e qI e
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and for the heterojunction transistor operating under space-charge-limited

emitter current

V.

= r C - e Ce HTell e e 2I
e

(30)

Assuming that both devices have the same emitter capacitance C
e

at the same current Ie, then

and operate

"reH q V e

TeN 2k T
(31)

which gives a factor of 40 for V e = 2 volts and kT/q = 0. 025 volts. The hetero-

junction transistor therefore has a lower frequency response, when only the

differential resistances come into play. The advantage of the heterojunction

transistor, as claimed by G. T. Wright, should be the lower capacitance, Cell,

due to space-charge-limited current operation. This capacitance however can

only be obtained, when the GaAs or CdS film is made rather thick. Then the
-3

current is reduced proportional to d whereas the capacitance is reduced
e '

-l
only proportional to d e . Therefore, to achieve the low capacitance operation

at a reasonable current level and using a thicker GaAs or CdS emitter region,

it is necessary to have a material of high mobility. The mobility should be at

least within a factor of ten of the electron mobility in the base region of the hetero-

junction structure. For the device structures under investigation Cell = 60 pF

(see Figure II) and re = 500_, for Ve = 2 volts, and le = 2rnA (see Figure 9)

so that

1

fTH = 2_r r C = 5 MHz
e e

The bipolar transistor for the same current level and same capacitance would

have

fTN = 200 MHz
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c) A Method for Determination of Trapping Effects:

Theoretical Model - Fundamental properties of trapping states in thin single

crystals or polycrystalline films of semiconductors or semi-inculators can be

studied by means of their frequency-sensitive behavior obtained from admittance

or impedance measurements. Muller(Zl, 22) has analyzed the behavior for CdS

thin single crystals containing traps for the case of one injecting and one ohmic,

and two injecting contacts, and predicted a theoretical admittance variation with

frequency in insulators having traps Subjected to charge injection.

For trapping centers more than a few kT above the steady-state Fermi level,

the rate equation for the trapped-charge density N T is given by the difference

between the rates of filling and emptying, and can be written in the form (23)

dN T

= - (N T - yN) coe (3Z)

where N T is the trapped-charge density, N is the free-charge density, toe is

the probability-of-escape frequency for a trapping center and ¥ is the equilibrium

ratio between trapped and free charges.

For the case of thermal equilibrium and shallow trapping levels

W -WT]co = N v S T exp ce c - kT (33)

where N is the effective density of conduction band states, v is the electron
C

thermal velocity (107cm/sec at 300°K), S T is the capture cross section of an

empty trap for a conduction-band electron and (Wc - WT) is the trap-depth below

the conduction-band.

For a sinusoidal voltage excitation, V = V ° cos cot, the time dependence of N

will depend on the nature of contacts applied to the structure. If we have one

injecting or ohmic contact and assume proportionality between applied voltage

and injected charge density, then the waveform for the conduction band density,

during excitation will be a half-wave rectified sinusoid with a peak value of N m.

Using a Fourier analysis of the wave-form we can write
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1
N : -- N cos cot

2 m (34)

which inserted into Equation 32 yields the rate equation

I 1 ]dt = - NT + -Z- YNm cos cot co. (35)
e

This linear differential equation can be solved by assuming a solution of the form

NT(t) = A sin cot + B cos cot (36)

which results for the steadystate termin

1 cos cot co sincot

NT(t) = -Z- YNm 1 + (_-e)z + coe [I + _coe]Z (37)

In phase with the applied voltage is the first term in parenthesis of Equation 37

and represents the trapped charge capacitance variation with frequency. If the

maximum capacitance at very low frequency is CoT, then the capacitance

variation with frequency is given by

CoT
CT(_°) = Z (38)

,+(%)
Since the second term in Equation 37 is 90 ° out of phase with the applied voltage

and has a derivative in phase with it, it represents a current in phase with the

voltage. The term is equivalent to a conductance assigned to the conduction

mechanism between traps and the conduction band. The equivalent parallel

conductance, G(_0) as a function Of frequency is then given by

co CoTG(co) =

'coe + co

(39)
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G(_)/co goes through a maximum where co = ¢oe, which gives the value of co .
e

From the value of G(¢o)/co at the maximum, which is equal to CoT/Z, one can

calculate CoT.

A theoretical plot for CT(co ) and G(co)/co is given in Figure Z4.

An equivalent network can be constructed which represents the analog to trap-

filling. The charge Qc' stored in the capacitor, is analogous to the density

of filled traps NT, provided that co -1 is taken to be proportional to the timee

constant RC and V s is taken to be proportional to _/N. This network is shown

in Figure 25. A parallel capacitance of, C D, was added which represents the

depletion layer capacitance in the absence of any trapping. Noting that

co
e

-1
(R T CoT) , the network admittance is

2

y = oT CoT (40)

co + co ' 1+ co
e

where the real part is a conductance equivalent to that in Equation 39 and the

imaginary part represents a susceptance of a capacitance equal to Equation 38.

Equation 40 therefore is the analog to the steady state solution of Equation 37.

Application to Semi-insulatin_ GaAs Films - Thin-film GaAs heterojunction

diodes fabricated on NN + and PP+ silicon substrates were subjected to alternat-

ing current measurements and transient response measurements. Since the

high resistivity GaAs film of preferentially oriented polycrystalline structure

contains certainly a sizeable number of traps, the following experimental results

are valuable information:

i) in application of these diodes to a three-terminal active device

if) in respect to electrical properties of the GaAs films fabricated

with the "three-temperature-method".

The GaAs-PP + (Silicon) diode N86-10 has been evaluated by the method outlined

in the previous section. The parallel equivalent capacitance and the resistance
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was measured on a Wayne-Kerr B-60i radio frequency bridge. The parallel

equivalent resistance was converted into the conductance, and the values of

C(_0) and G(_o)/o_ are presented in Figure 26 in a frequency range from 1 KG/sec

to 10 MC/sec. These experimental data conform generally with the ideal curves

of Figure 24. The deviation of G(¢0)/_0 measured function from the ideal solution

indicates probably the super_-position of very slow traps, e.g. surface states

at the heterojunction interface with the faster volume distributed traps• To

determine surface state parameters by the technique described here, Nicollian

and Goetzberger (24), and Lehovec (25) have recently published measurements

on the SiOz-Si interface.

The following information can be extracted from the experimental results of

Figure 26 :

The angular probability-of-escape frequency

e e

can be obtained at the maximum of G(to)/_ or at CoT/Z and yields 30 KC/sec.

InSertion of the condition _ = _ into Equation 39 yields
e

Gmax (w) = CoT (4Z)
¢o 2

e

From the measured value Gmax(O_)/_0 e =

one obtains from Equation 4Z a value of

•28 x 10 -9 mho sec and f
e = 30KC/sec

CoT = 570 pF

which is in close agreement with the extrapolation of the CT(tO ) function to the

very low frequency ranges when¢0 approaches zero. Above a frequency of

about 1 MC/sec the capacitance is frequency independent and yields the depletion

layer capacitance, CD, equal to 20 pF.

Since the probability-of-escape frequency is (see Equation 33)

I_ W WT 1¢0 = v S T N c exp ce kT
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one can calculate the capture cross section, ST , when the location of the trap

level below the conduction band is known. This value can be approximately

ascertained from conductivity measurements which are performed at a low

voltage applied in the forward or reverse bias condition of the diode. In this

region ohmic relations are exhibited. The conductivity of diode N85-10, as a

function of the inverse absolute temperature is shown in Figure 27 and yields

Wc - W T = 0.28 e V

The number of charges in the conduction band for GaAs, at a temperature of

300°K is

N 2 (27r m kT/t_ 2) 3/2 18 -3
= = 1 x I0 cm (43)C e

With

W -
c

S T =

107cm 1018 -3¢0 = 2_r (30 KC/sec), v = /sec, N = 1 x cm and
e c '

W T = .28 eV we obtained a capture cross section for electrons of

-15 2
2 x I0 cm

The trap density may be estimated with the aid of the assumption that the Fermi

level, WF, is located at W T, so that for the Maxwell-Boltzman statistic the

trap density is given by

I_ W -WTI
N T = N exp cc kT (44)

and yields a value ofN T = 2 x 1013 -3cm . It should be noted that this trap

density is only assigned to the deepest level. The total number of traps could

be much larger, if other and more shallow levels are present. This seems to

be the case as indicated by a second peak in G(¢0)/00 at a lower frequency.

(see Figure 26)

Transient response measurements were made on several diodes when switching

from a steady state forward current injection of about 5 mA to a reverse bias

of 5 volts observing the transient recovery characteristic. Figure 28 gives the

recovery characteristic of diode N86-10 and a normal PN-junction alloy silicon

diode of the same junction area. The silicon diode recovery in Figure 28a is
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the expected transient when injected minority carriers are present and swept

out. With a loop impedance of 100_ and a zero bias capacitance of 100 pF, a
-8

time constant of T = I0 sec was expected for this diode, which corresponds

roughly to the I/e decay of the actual recovery. The recovery of N86-10 is

shown in Figure Z8b. Two transients are obvious. A very short one with a

time constant of about Z. 5 x 10-gsec, which corresponds to the majority carrier

transient of the "intrinsic" heterojunction without trapping effects. The

calculated capacitance is Z5 pF which should be compared to the measured

C D = Z0 pF at high frequency, e.g. above I MC/sec. The indicat&d fast

recovery should be expected from a true heterojunction. Deterioration of the

frequency response with a long time constant is due to the trapping effects.

When suddenly the reverse polarity is applied to the diode which was operated

under forward bias in the space-charge-limited mode then the fast transient

corresponds to charges removed from the N + ohmic contact to the GaAs-film

and the P+ silicon, e.g. equivalent to the charges on the plates of a capacitor.

However, the filled traps will release also their charges with a lesser speed

and cause the additional recovery current. If we express the external current

by an exponential decay of time constant to, then

[

lex(t) = lex(O ) exp I'- --

which can be set equal to

/Iex(t) = q N T A d-'-t-

Upon equating and integrating from t = 0 to t= oo and x = 0 to x = L,

the total number of traps emptied, which is equal to

(45)

(46)

one obtains

N T = (-)

Iex(O) t o

q AL
(47)

Inserting the measured values of Iex(O) = 5 mA,

A I. Z x I0 -z Z= cm and L = 1 x 10-4cm yields

N T = 8 x 1014cm-3

Q
t = 30 x 10-" see,o
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= 1015 -3This value should be compared to the value of NT 1 x cm , which was

determined from the traps-filled-limit voltage, VTFL, (see Figure 9). The
ionized donor concentration, which is assumed to be close to the trap density,

was determined from differential capacitance versus voltage measurements
= 1015 -3(see Figure 12) and gave a value of N D = N T 2 x cm . The value for

the trap density of N T = 2 x 1013 _3cm as determined from the relation in

Equation 44, should be assigned only to those traps located at 0. Z8 eV below

the conduction band. The more realistic values of total trap density of

8 x 1014cm -3 and I x 1015cm -3 must be considered as a summation over all

traps NTi at a location WTi according to

(w )N T = E = N E exp c WTi
i NTi c i - kT (48)

3) Discussion and Conclusion
........................

Vapor deposited heterojunctions of either high resistivity CdS or GaAs to Si

are capable of operating under space-charge-limited current conditions. Using

the CdS-Si heterojunction as an electron emitter, heterojunction transistors

with an alpha of 0.9 were fabricated. Under prolonged forward or reverse bias,

the diodes showed changes in electrical characteristics. The GaAs-Si hetero-

junctions were found to be superior in respect to stability. The higher inherent

mobility of GaAs over CdS was, however, not obtained with the vapor deposited

films. The GaAs-Si heterojunction transistors were fabricated in a planar

structure and a!pha's in the range from 0.8 to 0.9 were obtained. Frequency

measurements indicated, that the frequency response is primarily limited by

the emitter cut-off, similar to that of a normal bipolar transistor. Only with

improved electron mobility of the CdS or GaAs film one could expect the high

frequency operation of such a device due to a low and current independent emitter

capacitance arising from space-charge-limited operation. Trapping effects

and interface states cause serious storage phenomena and reduce the switching

speed. The lattice mismatch of the two semiconductor materials to form the

heterojunction generate states, which lead to recombination losses and thus
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determine the electron transfer efficiency. This recombination phenomenon

causes a base current flow, so that minority and majority carrier transport

is involved, similar to the normal bipolar transistor action.
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SECTION C

THE THIN-FILM SPACE-CHARGE-LIMITED TRIODE

WITH DIELECTRIC SURFACE GATE STRUCTURE
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cl THE THIN-FILM SPACE-CHARGE-LIMITED TRIODE WITH

DIELECTRIC SURFACE GATE STRUCTURE

l) Design, T he or y and Exp_e_rjm_ e nt

This thin-film space-charge-limited triode employs the dielectric surface gate

structure and is fabricated with silicon-on-sapphire technology. It was fab-

ricated and electrically evaluated in its basic structure under this contract.

Figure Z9 shows a photograph of a sapphire chip containing ten thin-film devices

with varying geometries. Device No. 4 with L D = 10_ and L G = 5}_, was found

to be the best high frequency geometry for the thin-film space-charge-limited

triode fabricated with this mask design and present material properties. This

is by no means the optimum design of a thin-film space-charge-limited triode

and with improved structures a frequency response of several GHz can be

expected. The space-charge-limited triode structure is shown in Figure 29

which defines the geometrical and material parameters to be used in the theoret-

ical evaluation and discussion. Two PN +- junctions and one insulated gate

electrode are essential to the device. The source PN÷ -j unction is forward

biased and the drain PN+-junction is reverse biased. The condition is obtained

by grounding the source and applying a positive bias on the drain. If the bias

is made sufficient enough that the depletion region for the junction of the drain

extends all the way across to the source, than a normal "punchthrough" condition

is established. The band diagram for this condition is shown in Figure 30a.

In the P-region the current flow is by electrons and is space-charge-limited

because of the high resistivity of the depleted region and the finite transit-time.

The modulation of the current is by the gate electrode. A negative bias de-

presses the potential distribution around the source PN÷-junction, thus decreas-

ing the drain current. Drain current is very small until the drain junction

punches through to the source junction. This current is essentially the reverse

saturation of a PN+-junction. The substrate doping and the distance between

drain and source determine the magnitude of the voltage at which punch-through

occurs, which is given by

Vp

q N A LD z

ZE E
S 0
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where

q =

N A =

L D =

E =
S

electron charge

acceptor impurity density

distance between source and drain

relative dielectric constant of the semiconductor

Besides the depletion mode of operation with a negative gate bias at the gate,

the enhancement mode operation with a positive gate bias is possible. A

positive bias enhances the potential distribution around the source PN+-junction,

thus increasing the drain current. These two different modes of operation can

be understood, when examining the field maps in Figure 30 where

30b pertains to normal case of current flow between source and drain

and no disturbance from the gate electrode is present

30____c pertains to the positive gate enhancement mode of operation, where

the electric field is increased in the region near the source

30d pertains to the negative gate (depletion) mode of operation, where

the electric field is decreased in the region near the source.

The two modes of operation have been experimentally verified and typical

characteristics are shown for both types in Figure 31, which also indicates

the excellent temperature performance of this type of device down to liquid

nitrogen and possibly cryogenic temperatures.

Evidence of the space-charge-limited current behavior was obtained first on a

MOS-TFT made on a silicon film grown on sapphire with a P-type resistivity

of 150i2cm. The device exhibits mixed characteristics since its geometry is

not optimized for SCL-triode operation. At low voltages the normal operation

characteristics of the MOST are observed, identified as region I and II in

Figure 32. Above the onset voltage, VON, space-charge-limited current is

additive to the drain saturation current IDS. In region III, punch-through has

occured and two current components, namelyIi,and I2, are present. One current

component is caused by electrons flowing in the channel and the other by electrons

flowing under space-charge-limited condition in the depleted P-film region.

Eliminating, therefore, the current component in the channel by recessing the
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gate electrode, will lead to the structure of the proposed thin-film SCL-triode

as shown in Figure 29, which employs the dielectric gate structure. The

operation of a narrow gate MOS-Transistor, e.g. small L D, as a space-charge-

limited triode with full gate covering source and drain channel region was

described by Atalla (26). The additive current component can also possess a

linear relation, which is indicative of space-charge-limited current, whereby

the electrons reach their high drift field limiting velocity. In region IV the

additive current to IDS is equal to

Z¢_ A
o Vlim

ISC L - LZ V D at V D > > VON (50)

In region III:

95 ¢ _A
o 2

ISC L =
8 L 3 V D at V D > VON (51)

In region II (Isc L = O):

_C

IDS - 2L_-- (V G - Vo)Z at V D < VON (5Z)

In region I (Isc L = 0):

C I VDZJID = L z g (VG - VO) VD 2 (53)

A typical VDI D - characteristic of MOS-TFT with a P silicon-on-sapphire

structure is shown in Figure 33. It shows clearly the behavior in the four

current regions as described by above equations. Above 45 volts avalanche

breakdown occurs.

The space-charge-limited current characteristics of MOS-Transistors were

theoretically predicted by Geurst (z7) in the case for large values of V D and

small values of LD/h. This approach of solving the voltage-current character-

istic of the insulated-gate field-effect transistor could be used to derive the

voltage-current characteristics of these devices, since it takes in consideration
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V D I D - CHARACTERISTIC OF MOS-TFT

P SILICON -ON- SAPPHIRE STRUCTURE
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Channel Width W = 700_
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the x and y components of the fi=Id_ E a_ indicated in Figure 30. This of

course requires a solution of Poisson's equation in two dimensions to the

appropriate boundary conditions and should be subject of a theoretical study.

One can assess the voltage-current characteristics of the space-charge-limited

triode with dielectric gate by a charge-control analysis, with emphasis on

transit-time effects under drift condition. The results of this analysis will be

of first order, but are shown to correlate well with experimental data on actual
devices. With this analysis, one can show, that the fundamental limitation of

all charge control type devices is the transit-time of electrons between source

and drain. In the space-charge-limited triode, the space-charge is determined

by the drain-to-source voltage, VD. This is in direct contrast to the normal
MOS-Transistor with pentode-like charactei_istics, where the space-charge is

determined primarily by the gate potential, VG, alone at V D > VG. The basic
operation of the device in the structure of Figure Z9 can be explained through

the sketches of the field-line plots were published for a dielectric triode by
Vine and Franks (28) using a resistance-network analogue technique. However

the present geometry was not considered and only structures based on plane

parallel-sided configuration were treated. After punch-through is reached at

a drain voltage VD larger than Vp, space-charge-limited current of electrons
will occur across the P-region with length LD. This current is voltage dependent

through VD and can be effectively modulated by applying a negative or positive

gate-voltage VG. As a consequence of this applied voltage, a retarding or aiding
field is set up between the gate terminal and source current plane, which

decreases or increases the transit-time for electrons through the P-region of

the length LD.

In the following analysis, it is assumed that the thermally generated carriers

are negligible and the semiconductor is trap-free and the space-charge intro-

duced from the gate voltage is negligible in comparison to the present space-

charge setup by the drain voltage. The drain current is then defined by

%
ID = (54)

Teff
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Where QD = CD VD is th_ charge uu,,L_ulled by the drain voltage, V D and C D

is the space-charge capacitance. With no gate bias the effective transit-time

for electrons from source to drain is equal to

Z
L D

TD = (55)
_o VD

so that the drain current is equal to

_n CD 2

ID - V D (56)

LD2

Equation 56 gives the relation for space-charge-limited current between source

and drain plane, with neglect of the usual numerical factor of 9/8.

gate bias, one can define an effective transit-time

T D T G
7" eff = (57)

T D +T G

With applied

where

2
L G

7" G - (58)

_'n VG

Combining Equations 54,

of V D and a positive VG,

I D

55, 57, and 58, yields the drain current as function

in the form

[ IVo LD 2 (V D + VG)2 1 + _ LG] (V D _ VG )
(59)

For the negative gate ---'* _v v_as_ operation

_n CD
ID - 2 (VD - VG)2

L D

l _ (60)
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As a consequence of the _ssurnption,_ it should be noted that in the positive gate

bias operation the triode reaches a limiting current value at high V G values of

_n CD 2
ID = 2 VD (61)

(L D - LG)

This means physically that the source plane has been moved to the edge of the

gate electrode (see Figure Z9}, so that the gate voltage becomes rather ineffective

in modulating the space-charge-limited current commencing between a plane at

the gate edge and the drain. Figure 34 is an experimental verification of this

case. At positive gate voltages above 10 volts, crowding is observed, which

means loss of modulation control. The envelope of the limiting current gives a

square-law characteristic as expected from Equation 61. In the intermediate

ranges of positive gate voltage the transconductance is obtained from Equation 59

by differentiation in respect to V G

gm =

d I D _t C D

2
d V G L D

and gives

[ c° 21[cL° zt}V D a + _ + 2 VG + (62)

The transconductance has according to Equation 62 a linear dependence on VG,

which can be observed on the experimental device NAS 2-9 in Figure 31. At

low gate voltages, the built-in voltage, V o, will contribute to deviations from

the relation in Equation 62. This voltage is determined by the excess charges

residing in the SiO 2 dielectric and at Si-SiO 2 interface. It should be also noted

that drain current will only flow when V D > Vp. This condition causes a linear

shift of the voltage-current characteristic equal to Vp, since below this voltage

no space-charge is present, which can be modulated by the gate potential. For

effective triode operation, it is desirable to have low punch-through voltages,

which can be obtained according to Equation 49, by high resistivity P-type

material, e.g. low N A, and small dimensions for L D. In the devices investigated,

L D = 10_, so that with a P-type resistivity of 100 to 20012cm, the values for Vp

are between 5 and 10 volts. For L D = 5_, one would obtain, with the same

resistivity, values between 1.25 and 2.5 volts.
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,_u ..^1_-_ _ can be
_e v,,_=ge-curren_ characteristic of the SCL-triode by including V °

derived by replacing the transit-time in Equation 55 with the modified value

due to V ° and putting

Z
L D

TD = (63)
_n (VD + VG - Vo)

yields

Z

ID - (V D + V G + + V G
LDZ - V°) -_G (VD

- Vo)(V G "Vo)1
(64)

Note that Equation 59 and 64 represent a different functional relationship than

that proposed by Wright (1) based upon a modified vacuum triode approach.

The transconductance, which is the derivative of Equation 64 in respect to V G

is now

_n CD

gm- Z
L D [ [Lo21V o Z + _LG/ j + Z (VG-Vo) I + I (65)

and reveals the correct dependence on V G as observed experimentally. When

the device is operated with a negative gate potential it has a transconductance of

\Lo/
_n CD

gm = (-) ?.,
L D

2Vo 2 l
J

(66)

which was obtained by differentiation of Equation 60 in respect to V G, For the

negative gate voltage operation the triode has a cut-off condition, which occurs

at a gate voltage

V D

VGC O -

I+

(67)
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The amplification factor, G O , of the triode at cut-off is therefore

Z

VD ( LD )
G - - 1+

o VGCO -_G

(68)

Although the transit-time concept gives a correct functional relation of the

current-voltage characteristic as function of the geometric ratio LD/LG,

which determines the amplification factor G o of the device, it is recognized

intuitively, that also the ratio of LD/h should have an important contribution.

This functional relation will be established, when a two dimensional solution

to Poisson's equation is available.

A numerical example will demonstrate the good correlation of the first order

theory with experiment within a factor of two, which is very good in view of the

uncertainties of some parameters. The parameters apply to the structure of

device NAS 3-7, whose voltage-current characteristics are shown in Figure 31.

The nominal dimensions for L D 10 x 10 -4= cm, L G = 5 x 10-4cm, and

W = 6. Z5 x i0 -2
cm. Equation 60 is plotted in Figure 35 using the following

SiO 2 10 -4 = 1000cmZ/Vsec= 12 (Si), e. = 4 ( ), h = 1 x cm, _tnother parameters: Ss I

and Vp = 5 volts. The theoretical amplification factor from Equation 68 is

equal to 5 and although the experimental device shows, that ID at V G = O and

VGC O is twice the calculated value, the experimental amplification factor is

about 5 and shows a remarkably good agreement with Equation 68, when

considering only the geometrical parameters L D and L G. The first order theory

for the voltage-current characteristic can therefore be used with confidence to

assess the performance of an improved space-charge-limited triode. The

relation given in Equation 59, and 60 reveals that:

a) For more effective modulation, L G should be much smaller than

L D, so that LD/L Gbecomes large. In the geometries presently

investigated the best ratio is Z, with L D = 10_t and L G = 5_t. Further

refinements in photolithographic techniques may achieve in the near

future a ratio of 5, which would result in an amplification factor

G =26.
O
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b) The punch-through voltage, Vp, should be made as low as possible,

which requires high resistivity heteroepitaxial silicon film growth

on sapphire or other suitable high temperature single-crystal

sub str ate s.

Experimental devices have confirmed the two modes of operation and photographs

of electrical characteristics at room temperature, e.g. 300°K and liquid nitrogen

temperature, e.g. 77°K are shown in Figure 31. It is interesting to notice,

that leakage current components disappear at the low temperature, since "freeze

out" of carriers takes place below 100°K. The remaining carriers are believed

to be "hot" electrons. In the display, straight line portions can be seen, which

are indicative of space-charge-limited currents under velocity saturation.

Solving Poisson's equation by assuming that the charge carriers move ,with

constant velocity - here the limiting velocity Vli m of electrons at high fields -

predicts the relations as given previously by Equation 50

ID ___ s o Viim
LD Z VD (69)

The critical field in silicon for electrons to reach their limiting velocity is

about Z x 104 V/cm. Since in our structure L D = 10 x 10-4cm, at V D = Z0 V

this critical field is established and will be exceeded at higher voltages.

The general frequency characteristics and the frequency limitations have been

obtained from a set of Y-parameter measurements as a function of frequency

using the General-Radio Admittance and Transfer-Function Bridge. The

measurements of a space-charge-limited triode (NAS 2-9) operating with positive

gate bias are shown in Figure 36. From these measurements the _r -section

equivalent circuit has been derived, which is shown in Figure 35. The measure-

ments and the equivalent circuit can be represented by the following set of

Y-parameters (_ = 2 = f)

1 /2 i cG]YI i - R G -_o + j¢o CGS + CGD + Z (70)

-4Z-



°

Y12 = - j_ CGD (7!)

[ gm o1Y21 = 2 - jco CGD + 2 (72)

1+ co 1+ _---
O

Y22 = GD + jto (CGD + CDS) (73)

For the equivalent cirucit and the actual device, the following three character.

istic:frequencies can be defined from Equation 70, 71, and 72

-1
¢0 = CG) (74)o (RG

gm

_o - (75)
c C21

gm

co - (76)
max C 12

tOo is the frequency, where the real part of Y21 has dropped to the value of

gmo/2, where gmo is the low frequency value and R G C G is the time constant

associated with the gate input network. ¢0 is the cut-off frequency of the devicec

due to the feedback effect of C21 = CGD and co is the theoretical maximummax

frequency of oscillation, which can be realized in practice only, if co > too max'
but is usually less than the theoretical value due to parasitic circuit elements

not properly accounted for in the equivalent circuit. These parasitic elements

contribute to losses when the operating frequency of the device approaches its

frequency limitation at f where the gain has dropped to unity. For themax'

SCL-triode NAS 2-9 in Figure 36, fc = 300 iVIHz and f = 500 MHz. Other
max

devices were measured, which indicated maximum frequency of oscillation as

- = was observed,high as 1 OHz. In most cases a premature fall off in gm Y21r
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which is believed to be caused by a parasitic series resistance in the gate circuit

and is not shown in the equivalent circuit of Figure 35. Its probable origin is

the thermocompression bond to the aluminum metallization or the aluminum

alloy to the N + source region. The device NAS 3-6, which apparently did not

have this series resistance, has a flat response of gm= YZlr = 2mA/volt from

d:c to above 500 MHz. A set of measured Y-parameters obtained on the GR-

Admittance Bridge is presented in Figure 37. The device shows a cut-off frequency

YZ
f lr gmo= = = 800 MHz

C

2 7r Y21i 2 _r Cz1

and a maximum frequency of oscillation

YZI co gmo
f = = = 1 GHz

max
2 7r Ylzi 2 7r C12

The device has a power gain of 6 db at 500 MHz when matched into 5f_ input and

output impedance, which was verified by a voltage gain measurement at 500 MHz

with 50i2 terminations. The voltage gain G = Vout/Vin was about Z, which gives

PGdb = Z0 lg G = 6 db at 500 MHz

It should be noted, that susceptances, e.g. imaginary parts, contain also the

parasitic capacitances of the T0-5 header, which were obtained from a "dummy"

header measurement at 300 MHz and are equal to

CGS = 0.4 pF

CDS --- 0.4 pF

CGD = 0. 1 pF
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The effective and measured capacitances are

CII = 2.4 pF

C22 = 0.6pF

C21 = 0.48 pF

C12 = 0.3ZpF

which can be corrected for the parasitic capacitances, so that the actual device

has the following values

CII = Z.0 pF

C22 = 0. Z pF

CZl = 0.38 pF

C12 = 0.2Z pF

These capacitance values predict f = 840 MHz and f = 1.45 GHz. That
C max

co is indeed close to ¢o or even greater is concluded from the straight
O max

line relation on a log-log scale with a slope of 2 of the admittance vs. frequency

plot according to

Y1 lr K G (77)

A higher order theory (29) however, predicts that

1 (co/coo)z

Y1 lr - R G Z (78)

The relation in Equation 78 would not give a straight line plot over a wide range

of frequency, unless co/co0 < 1. At the frequency co = coo = comax' Equation 78

would give half the value as predicted from Equation 77.
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The power gain o5 an active device at maximum power output is

PG =

Z [2Yllr Y22r - R(YI2 Y21 )]

(79)

where R (Y12 Y21 ) represents the real part of Y12 Y21" Since the real part of

Y12 is zero" in the useful frequency range up to 1 GHz and Yllr Yzzr is smaller

than R(YI_ " Y21 ) one obtains from Equation 79 the power gain which is equal to

Y21[ 2
PG = (80)

2 Ylzi Y21i

Inserting the values for

relation

YI21' Ylgi and Y21i gives the power gain frequency

2
gmo C21

PG - 2 + (81)

Z_ CZ1 C12 2 CIZ

If we assume, that C21 = ClZ, the power gain is

PG = X I + (8Z)
_a_ C12

This relation predicts a gain roll-off of 6 db/octave and a maximum frequency

of oscillation at PG = 1 of

gmo

- (83)max C
12

as defined in Equation 76.
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"" Z) Discussion and Conclusion
........................

According to the objectives of this contract, the factual data in Section C show

the space-charge-limited current operation of the surface gate dielectric triode.

The silicon-on-sapphire technique lends itself to the advantageous fabrication

of this practical thin-film space-charge-limited triode. Owing to the dielectric

isolation of the individual devices, extremely low output and feedback capacitances

can be realized and integration of this and other device structures for high speed

and high frequency circuits is straightforward.

From the experimental voltage-current characteristics an amplification factor

of 5 is determined at the cut-off condition. The reported devices with W = 6Z5tt,

L D = 8 - 10_, L G = 5_ have transconductances in the range of 1 to ZmA/volt.

From a set of Y-parameter measurements a power gain of 6 db is available at

500 MI-Iz and the maximum frequency of oscillation is 1 GHz. The transconductance

gm= YZlr = Z x 10-3mho is flat from d-c to about 700 MHz and the feedback

capacitance CGD = ClZ = 0.3Z pF at 500 MHz (this value includes the parasitic

header capacitance of the T0-5 package). The exact voltage-current character-

istics of this device as a function of gate voltage requires the solution of Poisson's

equation in two dimensions to approximate boundary conditions and is the subject

of a theoretical study.

Although the experimental devices are not optimized with respect to the geometrical

parameters LD, LG, h and t and the material parameters, namely resistivity

and mobility, it is concluded, that with refined structures a maximum frequency

of oscillation of 2 to 4 GHz can be obtained. Applying the device concept of a

recessed gate to the Schottky barrier gate field-effect transistor in GRAs, as

described recently by Mead (30), may eventually produce thin-film space-charge-

limited triodes in the 5 to 10 GHz frequency range owing to higher mobility. In

addition to the excellent temperature and frequency characteristics, the thin-film

space-charge-limited triode could exhibit low noise operation according to

theoretical investigations by van der Ziel (5).
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D) MATERIAL PREPARATION AND EVALUATION

1) CdS Films By_Evaporation

The source used for the evaporation of CdS was similar to that described earlier

by Zuleeg and Senkovits (31). A quartz tube about 8 cm long and Z cm diameter,

closed at one end, was uniformly heated from the outside. A thermocouple was

embedded into the CdS to monitor the temperature throughout the deposition.

The quartz tube was used horizontally in a vacuum bell jar. The substrate,

attached to a heater plate, was placed at a distance of about Z cm from the source

orifice. The arrangement is illustrated in Figure 38.

For all CdS evaporations only (111) oriented silicon wafers with a fine polish

were used. Immediately before deposition of CdS they were dipped into dilute

hydrofluoric acid in order to remove the oxide layer. During the deposition the

source was held at a temperature between 550°C and 700°C. The evaporation

time in most of the runs ranged from 1 to 5 minutes. In some runs the substrate

was heated up to Z00°C by means of a heater plate which had been smoothly

polished to assure good heat transfer. In other runs the substrate received heat

only from the radiating source. The structure of the films obtained did not

exhibit much variation from run to run and the films were smooth and adhered

quite well to the substrate. The thickness ranged from 0.5 to Z. 5_, depending

upon the time of evaporation.

Cadmium sulfide can appear in two modifications. The a phase is the hexagonal

wurzite structure, the _ phase is the cubic zinc-blonde structure as shown in

F_gure 39. As summarized by Escoffery (32), the hexagonal form seems to be

the stable modification between 25 and 900°6. However, when a vacuum deposited

CdS film is scraped off the substrate and is powdered, the hexagonal as well

as the cubic modification can be found (33), although the formation temperature

was well below 900°C.

The Figures 40 through 43 illustrate x-ray diffraction patterns for the samples

N-10, N-IZ, and N-Z5. These patterns were obtained by using a Norelco wide

angle goniometer with a Geiger M(iller Counter and 30 V Copper K radiation.
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The pattern in Figure 40 shows only the (10I), {002), and (004) line of CdS plus

the silicon lines. Figure 41 is a strongly textured CdS pattern, besides the

(002) and {004) peaks of CdS only silicon peaks appear. Figure 42 and 43 are

made from the same specimen which was a CdS film on a (111) oriented silicon

wafer. In Figure 42 practically the very strong (002) peak of CdS is the only

line that can be seen and no silicon line appears. After the wafer was slightly

repositioned in the sample holder of the goniometer, the chart of Figure 43 was

obtained. Now, the intensity of the {002) CdS reflection is much smaller, but

the pattern shows a large {111) silicon peak.

All the CdS x-ray diffractometer patterns obtained showed the (002) reflection

to be very strong, other peaks which would normally appear in a powder pattern

were either small or could not be identified at all. Patterns of this type indicate

a strong preferred orientation of the deposited films. The orientation of a CdS

film on a flat silicon substrate apparently is very similar to that on a flat glass

plate. A film of CdS evaporated on glass and left untreated, very often is

oriented such that the c-axis of most of the crystallites is perpendicular to the

surface(31, 34) This structure results in the large (002) peak in the diffraction

pattern. The (002) plane is the most densely packed plane in the wurzite

structure and this plane apparently is initially deposited parallel to the flat surface

and the film grows from there on attaining a preferred orientation.

The ratio of the intensities of the (111) silicon and (002) CdS peak in the Figures

42 and 43 suggest that the crystallographic orientation of the CdS deposit was

not influenced very much by the crystallographic orientation of the substrate.

The substrate wafer most likely was cut at a small angle with the {111) plane.

The CdS film probably grew in such a manner that the {002) plane was parallel

to the smooth substrate surface and was not parallel at the inclined {111) silicon

planes. The CdS films apparently show a tendency to orient themselves only

with respect to a flat surface, regardless of the crystallographic structure or

orientation of the substrate. Since the influence of the substrate orientation

upon the growth habit of the layer seems to be very small, it can be assumed

that the a-axis of the deposited CdS crystallites are randomly oriented. An

epitaxial relationship between substrate and applied layer does not exist.
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In Table I, data were compiled for the interpretation of the diffractorneter charts.

It can be seen that the difference between the d-spacing of the (002) plane of

the hexagonal a-CdS and the d-spacing of the (111) plane of the cubic _-CdS is

less than 0.1 per cent. Because of this extremely small difference it is not

possible to discriminate between the two respective peaks on the chart. The

peak marked (002) CdS, therefore, could be attributed to the cubic phase as

well. The peak marked (101) CdS, however, is an indication of only the hex-

agonal phase because in the vicinity of Z O = Z8.Z ° there is no reflection of

cubic CdS. Hence, from the obtained diffraction patterns alone, no conclusion

can be drawn whether the film structure is hexagonal, cubic, or a mixture of

both. For the exact determination of the structure, deposited CdS material

would have to be scraped off the substrate for a powder pattern examination.

TABLE I

CRYSTALLOGRAPHIC VALUES FOR THE INTERPRETATION

OF DIFFRACTOMETER CHARTS

Material

a-CdS

_-CdS

a-CdS

a- CdS

Si

_-CdS

Structure s

hexagonal

cubic

hexagonal

hexagonal

clrbic

cubic

Plane

(hkt)

(ioo)

(111)

(ooz)

(lOl)

(iii)

(zoo)

d- SoPaCing
in A

3.583

3.36

3. 357

3. 160

3. 138

Z.Z

Line intensity
ASTM-card

57%

ioo%

59%

lOO%

100%

407.

2 (_ with
Cu K

radiation

24.85

26. 553

26.533

Z8. Z

28.44

30.83
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Z) GaAs Films b__The Th_ree Te_m_pe_r_a_t_ure__M_eth_od_

a) Description of the Method:

For the deposition of GaAs the "three-temperature method" was used. This

method has been first described by G_nther (35' 36) and it has been applied

successfully to dep{)sit In Sb (37) and GaAs (38j" 39) onto amorphous substrates.

According to this method, gallium and arsenic are evaporated simultaneously

from separated crucibles at temperatures T 1 and T 2, respectively. The sub-

strate is heated to the temperature T 3 by means of a special substrate heater.

Each of the three temperatures must be held in a certain range to achieve

controllable depositions. T 1, the temperature of the gallium crucible, is set

at lZ00 to 1300°C; the evaporation rate of the gallium governs the growth rate

of the GaAs film. The temperature T 2 of the arsenic crucible conveniently is

set at about 450°C. This results in an arsenic vapor pressure which is about

100 times greater than that of gallium as can be seen in the graph in Figure 2t4.

The temperature range for the substrate, T3, is comparatively large. T 3

must be at least as high as the temperature which is required to form the GaAs

compound. We found for gallium arsenide deposition on glass substrates that at

a substrate temperature below 350°C a silvery, mirror-like deposit was formed.

X-ray diffractinn analysis of such a film did not reveal any diffraction peaks

at all, thus suggesting the deposit to consist of an amorphous mixture of gallium

and arsenic. With a substrate temperature higher than 350 ° the compound GaAs

was detectable by x-ray diffraction. This sets a lower limit for T 3. The

upper limit is given by the decomposition temperature of the compound. At

temperatures of 800 or 900°C GaAs becomes unstable when heated in vacuum

because it loses arsenic. In addition, T 3 must be so high that tie element with

the higher vapor pressure is not deposited in elemental form. When this

condition is fulfilled, only the compound is deposited on the substrate. This

condition, however, does not present a problem when arsenic is evaporated

because of the very high volatility of this element. The arsenic must be

evaporated always in excess in order to form the compound GaAs close,to

stochiometry.
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A cross section of the evaporation apparatus for GaAs film deposition with the

"three-temperature-method" is illustrated in the Figure 45. Gallium is

evaporated from a boron nitride crucible heated by means of a cylinder made

of 0. 004" thick tantalum sheet metal with a concentric double wall radiation

shield. The arsenic crucible is made of quartz glass and heated with a coil of

0.01" tantalum wire. As shown in Figure 45, quartz wool plug is placed into

the orifice of the arsenic evaporator as suggested by Howson (39). Thermo-

couple wells are provided for both crucibles. A sheet of stainless steel acts

as a heat shield between the gallium and the arsenic crucible. The distance

between the orifices of the two crucibles is I. 5". A thick stainless steel plate

is placed about 2" above the crucibles. The substrate, together with a mask,

is held against an elevated section of this plate by means of two rings. The

heater coil for the substrate is contained in a metal enclosure which is attached

to the steel plate.

Evaporations were performed at a pressure of about 5 x 10 -6torr. The sub-

strates used were silicon and sapphire with different crystallographic orientations

and pyrex glass. In some runs tellurium was added to the gallium crucible in

order to dope the gallium arsenide film.

b) Results:

The appearance of the deposited GaAs layers was not very consistent from run

to run. The films usually had a mirror-like reflectivity. Sometimes, however,

a dark grey haze appeared in certain areas of a substrate wafer. Under the

light microscope, it was not possible to clearly identify a structure of the

reflecting areas of the GaLAs deposits, the surface appeared to be smooth. The

hazy areas, on the other hand, often showed a very large amount of tiny,

needle-like crystals. These whiskers were up to a few microns thick, pro-

truding in some, but rare cases up to 20_ beyond the otherwise flat surface.

Figure 46 is a photomicrograph of a GaAs deposit with whiskers. It can be

seen that a certain number of whiskers grow, in some cases, from the same

point so that a star is formed. Other irregularities which occasionally were

found in the films under the light microscope were small, shiny semispheres

which obviously were composed of gallium and which were surrounded some-

times by a dark, solid shell.

-53-



R

"_"S TAIN LESS

MASK / _"" SUBSTRATE

STEEL PLATE

QUARTZ WOOL PLUG\ .__ _ BORON NITRIDE CRUCIBLE

QUARTZ CRUCIBLE GALLIUM.

0.01" TA WIRE _ _! IIiI

i TANTALUM HEATER 0. 004"

THERMOCOUPLE _ _ TI-_RMOCOUPLE

SHIE L DING

Figure 45



GaAs Film with Whisker 

F igure  46 

I 



The occurrence of whiskers on the films seems to be favored by higher sub-

strate temperatures during the depositfon. Furthermore, the quality of the

deposits could be improved by using a smaller rate of deposition, e.g. by lower-

ing the gallium crucible temperature. It appeared as if the quartz plug in the

outlet of the arsenic crucible, which was not used in the initial experiments,

resulted in an improvement of the appearance of the GaAs films because of its

baffling action. For all these reasons most of the depositions for the devices

were carried out with substrate temperatures below 600°C and with a gallium

crucible temperature of approximately 1000°C which resulted in a growth rate

of the GaAs films of about 1_ per Z0 minutes. Under those conditions the

films were shiny and only a few whiskers, if any, could be found.

Apparently the star of whiskers grows on a small droplet of gallium which

might have been formed initially. As more and more arsenic is evaporated the

liquid gallium is used up to form the needle-like GaAs crystals.

c) Chemical Composition:

The films were synthesized from the elements gallium and arsenic which were

both "electronic grade pure". No chemical analysis of these elements was

made. From the chemical point of view, the following two properties of the

gallium arsenide films are of importance:

i deviation from the stochiometric composition

ii foreign impurities

A typical thickness of gallium arsenide films is one micron. This means that
Z

in an area of one cm there is not more than about 0.5 mg of material deposited.

Such a small quantity of material rules out any wet chemical analysis for an

accurate determination of the stoichiometry of the compound. Furthermore,

impurities of foreign origin would be far below the detectable limit of this

method.

X-ray diffraction analysis made of those films which were deposited at a

substrate temperature of 300°C or higher showed the reflections of GaAs
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corresponding to the values given in the ASTM X-Ray Powder Data File. The

lines besides those of the GaAs were always caused by impurity radiation from

the x-ray tube. No indication was found for an impurity phase in the film.

Several gallium arsenide films, deposited on silicon as well as on sapphire,

have been analyzed with x-ray fluorescence techniques. A Norelco scintillation

counter vacuum spectrograph with a lithium fluoride analysing crystal has been

used for this purpose. A_ typical recording is shown in Figure 47 of sample

N76-A which is a GaAs film deposited on (111) oriented silicon. The chart was

obtained with W-radiation of 40 kV and 25 mA, a scale factor of 32 and a time

constant of 2 sec. All the peaks in this and in other recordings could be traced

back to either gallium, arsenic or tungsten which stems from the x-ray tube.

This means that the concentration of impurity elements with an atomic number

of that of aluminum or higher is smaller than the 0.01 to 1 per cent sensitivity

limit of the method. For the elements with a lower number than aluminum,

particularly oxygen or nitrogen, no conclusion can be drawn because the radiation

from thepe elements is too soft to enter the scientillation counter.

Attempts have been made to obtain information on the stoichiometry of the films

by x-ray fluorescence. The accuracy of such a determination depends mainly

upon a standard sample which must have the desired composition and the same

thickness as the unknown samples. When samples of a compound have the same

composition but a different thickness, the ratio of the peak height of a certain

line of one constituent to the peak height of the corresponding line of the other
f

c_mstituent will be a function of the sample thickness because the two x-rays

with their different energies are affected differently on their way from the point

of generation to the sample surface.

Due to the difficulty of the preparation of a proper standard sample, the experi-

ments failed to reveal the stoichiornetry of the GaAs deposited with a reasonable

accuracy.
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d) Structure Investigation:

The structure of several GaAs films was studied with a Phillips EM-100B

electron microscope using conventional replica technique with Pt-Pd and

carbon deposition. The films of the samples investigated were deposited at

substrate temperatures of 400, 500, 550, and 600°C. The substrates were (111)

oriented Si and Ge, and Corning glass 7059. Figure 48 shows the structure of

a sample which was deposited at 400°C. The layer seems to be uniformly
o

polycrystalline with a crystallite size of about 500 A. The picSure of the

500°C sample, illustrated in Figure 49, shows a quite different structure.
O

Z000A thick clusters, apparently crystallites, are enclosed in a matrix

which is similar to that of the previous picture.

An area without the large particles from the same sample was selected and is

shown in Figure 50. The magnification of the electron microscope was brought

up to its limit and the markings on this picture indicate a distance of only 0.5_.

The picture reveals a very fine grainy structure. The Figures 51 and 52 show

the surface of GaAs films deposited at 550 and 600°C, respectively. Here again
O

comparatively large crystallites of up to 5000 A diameter are scattered randomly

in a relatively k_ooth layer. The two following, Figures 53 and 54, illustrate
.. /

the surface of_ GaAs film on a germanium and on a glass surface, deposited in

both cases with thesubstrate at 500°C. The structure of the film on germanium
o

is extremely fine a_the grains are not larger than a few 100 A. The film

structure on the glat_:s substrate is somewhat coarser. The particles on the

glass were in general rougher and higher than those on the germanium as noted

by the cast of their shadows.

The electron reflection diffraction pattern of several samples was investigated

with the electron microscope. A diffraction pattern, which can be considered

typical of that for many other GaAs thin-film specimens, is presented in

Figure 55. The picture closely represents a powder pattern. No indication

could be found in this picture or in others made under similar conditions for a

transition of the continuous rings to discrete points. This means that the

crystat!lite size is well below the diameter of the electron beam which might be

between one and five microns. This finding confirms the conclusion about the

crystallite size drawh from the replica pictures. It was not possible to determine
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Electron Micrograph of Sample N-84. 
GaAe Deposited on ( 1  1 1 )  Si at 400OC. 

(Replica Made from the Underside of 
the GaAs Fi lm) .  Mark indicates l p .  

Figure 48 



Elec t ron  Micrograph of Sample N-88 

GaAs Deposited on ( 1  11) Si at 500OC. 

Mark Indicates lp. 

Figure  49 



Elec t ron  Micrograph of Sample N-88 

GaAs Deposited on (1 11) Si a t  500°C. 

Mark Indicates 0. 5p. 

Figure  50 



Elec t ron  Micrograph of Sample N-89. 

GaAs Deposited on (1 11) Si a t  550°C. 

Mark  Indicates lp. 

Figure  51 



ELECTRON MICROGRAPH O F  SAMPLE N77B. 

GaAs FILM DEPOSITED ON ( 1  11)  ORIENTED 

Si AT 600" C. 

MARK INDICATES lp. 

Figure 52 



ELECTRON MICROGRAPH O F  SAMPLE N144D. 

GaAs FILM DEPOSITED ON ( 1  11)  ORIENTED 

Ge AT 500" C. 

MARK INDICATES lp. 

F i g u r e  53 



ELECTRON MICROGRAPH OF SAMPLE N144C. 

GaAs FILM DEPOSITED ON GLASS (CORNING 7359) 

AT 500' C. 

MARK INDICATES 1u. 

Figure 5 4  



Elec t ron  Reflection Diffraction 

Pa t t e rn  of Sample N-89. GaAs 

Film Deposited on (111)  Oriented 

S i  at 550°C. 

F igure  55 



the variation of the crysta!!ite size with different substrate temperatures by

means of the electron reflection diffraction technique.

The structure of a number of GaAs films was investigated by x-ray diffraction

techniques using a Norelco Geiger Mfiller counter wide-angle goniometer. The

above-mentioned samples which were used in order to make replicas usually

did not give a very satisfactory pattern when checked by x-ray diffraction.

Although a (1 ll) texturized pattern with an overlay of a powder pattern was

obtained, the diffracted energy generally was too low to obtain conclusive results.

The film thickness was only one micron or even less. In order to get a clearer

picture of the influence of the substrate tenaperature upon the orientation of the

GaAs films, a statistical evaluation was performed on 44 diffraction patterns

of GaAs films. The samples were arranged into 9 groups according to the

substrate temperature during the formation of the films, which ranged from

350 to 800°C. For each sample the relative intensity for the (220), (311), and

(400) peak was determined in relation to the respective {lll) peak. The relative

intensities obtained were averaged for each group and plotted as a function of

the substrate temperature. The graph is presented in Figure 56. The three

curves have a minimum between substrate temperature of 600 to 700°C. In

this temperature range all but a few of the GaAs crystallites are oriented such

that the (lll) plane is parallel to the substrate surface. This temperature range

seems to be very favorable for the growth of GaAs films with a preferred

orientation. At higher and, particularly, at lower temperatures then the 600

to 700°C range the relative intensity of the (220), (311), and (400) lines increase.

This means that the orientation of the crystallites is more random and the x-ray

diffraction pattern is similar to that of a GaAs powder. In the range investigated,

between 350 and 800°C, the patterns always show a texturization but the relative

intensities never reach the values of a powder pattern which are indicated as

horizontal lines in Figure 56. The findings confirm somewhat the results obtained

with the replica method. Higher substrate temperatures favor the formation of

larger crystallite s.
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• : e) Electrical Measurements:

A masking arrangement was designed to fabricate samples for the measurement

of the Hall-effect. An etched GaAs strip was provided with vacuum deposited

tin-gold contacts and heat treated for about one minute at 350°C in hydrogen.

A micrograph of a complete Hall sample is presented in Figure 57. The samples

were placed in a Teflon-insulated holder with spring loaded points for the current

and voltage contacts. By means of this pressure the substrate with the Hall-

sample was held against a small graphite block. With this arrangement, substrate

temperatures up to about 300°C can be applied. The substrate holder remained

in a glass enclosure under vacuum for measurements at elevated temperatures.

The Hall-voltage was monitored with a General Radio Company d-c amplifier

with an input impedance higher than 1013f_. The output of the amplifier was

connected to a recorder. The amplifier was used also for the measurement of

the sample current. For the determination of the voltage drop along the sample,

a battery operated Keithly electrometer was used. A water cooled Varian electro-

magnet generated a magnetic field of I0,000 gauss in ali experiments. The

procedure for the evaluation of the data was taken from Putley _411.""

The results of the measurements of all investigated samples are summarized

in Table If. Because of the high resistivity of the GaAs films, only good insulat-

ing materials like sapphire (a- A1203)or spinel (MgO- 3A1203) were selected

as substrates. The thickness of the GaAs layers was between 0.7 and 2.4_.

As demonstrated in Table II, the values of the room temperature resistivity of

the GaAs deposits scatter in a very wide range. Values as high as 3.3 x 106_2cm

and as low as 5.6 x 103_2cm were obtained. In one instance, 3012cm was

measured in a particular area of sample N-83A. However, this result was not

reproducible. The room temperature resistivities of all samples are plotted

as a function of the deposition temperature in Figure 58. This graph is not

very- conclusive, but it seems to indicate that, at higher substrates temperatures,

higher resistivity values are more likely to occur.

The conductivity as a function of temperature is plotted in Figure 59 for several

samples in the range between room temperature and about 300°C. In some cases
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Micrograph of a Strip of GaAs with 

Vacuum Deposited Gold Contacts 

for Hall - eff e ct Measurements  . 

Figure  57 
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the conductivity increases about four orders of magnitude over the temperature

range investigated. According to Figure 59, the samples apparently can be divided

into two groups: One has a room temperature conductivity of 4 x 10 -5 (ohm . cm) -1

and an activation energy between 0. 1 6 and 0. Z6 eV. The other has a conductivity

which is almost Z orders of magnitude lower and has an activation energy of 0.51 eV.

So far, it was not possible to determine clearly a relation between the deposition

parameters and the value of the conductivity or its activation energy. The 0.51 eV

slope follows very closely the intrinsic conductivity for single crystal GaAs

material as reported by Whelan and Wheatley (4Z). Their conductivity values are

shown in Figure 59 in a dashed line. It seems most likely, therefore, that the

conductivity of the high resistivity GaAs films approaches the intrinsic conductivity

of GaAs. The conductivity of the other samples with an activation energy of about

0. Z eV could be ascribed to impurity or defect levels. These samples apparently

approach intrinsic conductivity also at the higher temperature range. However,

the low mobilities measured indicate that a high degree of compensation probably

exists.

An investigation of the Hall-effect was practically not possible at room temperature.

The voltage across the Hall-contacts drifted and was very difficult to balance. In

measurements on nearly all the undoped samples Hall-voltages have not been

observed which could be interpreted unambiguously as above the noise level of the

system. Considering the sensitivity of the apparatus, this means that the room

temperature mobility is less than 1 cmZ/V sec.

The Hall-mobility could, however, be measured satisfactorily at higher temperatures.

Figure 60 gives the relationship between temperature and mobility for four samples.

The activation energy ranged from 0. 136 to 0.31 eV. The highest mobility value

obtained was 30 cmZ/V sec. at Z10°C for the sample N-16Z which was deposited

at 500°(; substrate temperature.

Figure 61 gives the carrier concentration between room temperature and approx-

imately 340°C for several samples. The carrier concentration of the two undoped

specimens increases from 1013 -3 15 -3cm to almost I0 _ cm with an activation energy

of O. 46 eV.
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° ,. Here again, as in the case of the determination of the mobility, it must be

taken into consideration that the values at lower temperatures are not very

accurate. Whenever a conclusive measurement of sufficient signal level was

obtained, the sample was found to be of N-type conductivity regardless whether

dopant was added or not.

f) Addition of Tellurium Dopant:

In 5 runs tellurium was added in a concentration range from 0. 003 per cent to

I0 per cent to the gallium before evaporation. Three GaAs films were analyzed

by x-ray fluorescence technique and no tellurium was detectable. This means

that the concentration was below 0.01 per cent. The surprisinglylow concentration

level of tellurium in the GaAs films most likely is a consequence of the high

vapor pressure of this element. At 1000°C the difference in vapor pressure

between gallium and tellurium is 6 orders of magnitude (40), as illustrated in

Figure 44. Hence, in heating up the gallium tellurium mixture to 1000°C, most

of the tellurium is evaporated onto the closed shutter before the deposition of

GaAs is started. For the formation of GaAs films with a controlled concentration

of a high volatile element, therefore, an additional crucible, containing the

dcrpant only, would be advantageous. Such an arrangement would comprise a

four temperature method.

The electrical measurements of tellurium doped GaAs samples were not conclusive.

The conductivity and its temperature dependence was found to be similar to that

of undoped GaAs. Hall mobility and carrier concentration values had a high

degree of uncertainity because of the noise level of the Hall voltage. A higher

carrier concentration of several tellurium doped samples is discernible from

the measurements presented in Figure 61. Conductivity values were very

similar to those of undoped samples.
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3) Silicon-on-S_apphire by Heteroe_itaxial Growth

a) Literature Suryey:

The following is a selection and discussion of articles dealing with the hetero-

epitaxial growth of silicon on foreign substrates. The growth of silicon layers

on substrates by means of gaseous silicon compounds has been under investigation

for several years. The compounds are either reduced in hydrogen or they are

thermally decomposed to obtain the elemental silicon.

Epitaxial deposition of silicon on single crystal quartz substrates was performed

in 1963 by $oyce• Bicknell, Charig, and Stirland (43) with the hydrogen reduction

of SiHCI 3. Rasmanis (44) grew silicon films on glazed polycrystalline AIzO 3

substrates with the hydrogen reduction of SiCl 4. This method was called

"rheotaxy" because the glaze is molten at the deposition temperature. Growth

of silicon layers on sapphire substrates was reported (45) in 1963 and first

published in 1964 by Manasevit and Simpson (46) who again employed the hydrogen

reduction of SiC14. Their initial results were obtained on substrates produced

by cutting a sapphire rod perpendicular to its fastest growth direction which is

approximately 60 ° from the c-axis. Large single crystal areas of silicon were

reported.

Mueller and Robinson (47) used the pyrolythic decomposition of Sill 4 to grow

silicon films on single crystal sapphire. Doo (48) deposited silicon on poly-

crystalline A1zO 3 with the SiC14 process. After melting and regrowth large

grain silicon films were obtained. The resistivities had values between 0.05

and 0. 1 i2cm for layers on high purity substrates. Bicknell, Charig• Joyce•

and Stirland (49) presented a study of the morphology of silicon films on single

crystal quartz. Their experiments were carried out with SiHC14.

A detailed study concerning primarily the deposition parameters and the epitaxial

relationship between the silicon deposit and various sapphire orientations was

p_+_,1 in !965 by Manasevit, Miller, Morritz and N_Ide_ (50) and by No!der

and Cadoff (51). Joyce, Bennett• Bicknell and Etter (SZ) investigated silicon

films on single crystal substrates of quartz and AIzO 3 employing the hydrogen

reduction of SiHCI 3 and the pyrolysis of Sill 4. Porter and Wolfson (53) used
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SIC14, SiHC13, and SiBr 4 as well as Sill 4 for silicon deposition on single crystal

aluminum oxide and they discussed the usefulness of these compounds for

epitaxial growth.

(100) and (111) oriented single crystal spinel wafers were used by Seiter and

Zaminer (54) for epitaxial growth of silicon with the SiCl 4 process.

The occurrence of twinning in silicon layers on sapphire substrates was invest-

igated by Nolder, Klein, and Forbes (55). Stresses which are developed in a

silicon layer on sapphire due to the mismatch in thermal expansion coefficients

can deform the substrate. This was pointed out by Dumin (56).

A study of the epitaxial relationship of silicon layers on commercially available

magnesium aluminate spinel was presented by Manasevit and Forbes (57). The

deposits were grown with SiC14 and Sill4. Dumin and Robinson (58) investigated

the doping of silicon layers caused by diffusion of aluminum ions from the

sapphire substrate during growth or annealing of the film. The epitaxial growth

of silicon on silicon carbide substrates by the decomposition,_ of Sill4 was studied

by Tallman, Chu, Gruber, Oberly, and Wolley %5%.

b) The SiC14 Process:

The initial experiments for the deposition, of silicon on sapphire were carried

out in the Hughes Solid State Research Center by reduction of SiC14 with hydrogen.

The furnace as well as the experimental parameters were exactly the same as

for the growth of silicon on silicon:

I)

z)

3)

4)

5)

SiC covered graphite boat in a 3 inch I.D. horizontal tube.

Deposition temperature 1125 ° (indicated) .
3

Hydrogen flow rate (carrier gas) Z6,000 cm per minute.

Flow rate of hydrogen saturated at room temperature with SiC14
3

220 cm per minute.

Growth rate 0.3_ per minute.

The sapphire substrate wafers, obtained from several commercial sources,

were of 0 °, 60 ° , and 90 ° orientation with respect to the c-axis.
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Figure 62 is a photomicrograph of a silicon deposit on a 0 ° oriented sapphire

wafer made with the SiCl 4 process at llS0°C. The habit of the growth shown

in this picture can be considered typical for the result of a large number of

runs made with similar parameters. Silicon crystals up to about 20_z in diameter

are scattered randomly on the sapphire surface. Between the crystals exist

areas where no silicon is deposited at all. Figure 63 shows the same section

as Figure 62, with the difference that the substrate was brought into focus.

Etching of the substrate takes place in those areas where no silicon is deposited.

Cross section of silicon deposits on sapphire substrates are illustrated in

Figure 64. A film in the initial stage of growth corresponding to the photo-

graphs in Figure 62 and 63, is shown in Figure 64a. With prolonged deposition

time, it is sometimes possible to cover the entire substrate with a film whose

structure is shown in Figure 64b. In spite of the unoriented growth, this type

of deposit permits the construction of good quality MOS-devices after the layer

is polished down to 1 or 2_. Because of the large size of the crystals, the

devices can, in principle, perform similar to those on a single layer of

crystal silicon. However, a film like that in Figure 64b is the exception rather

than the rule with the SiC14 process. What normally happens is that the holes

in the silicon layer cannot be closed; not even with prolonged reaction time. If

the specimen is left longer in the reactor than the period which would normally

give a 5 to 10_ growth at a certain set of experimental parameters, the substrate

is gradually etched in all the areas where no silicon was initially deposited.

The photomicrograph in Figure 63 is focused on the etched surface. Figure 64c

shows the cross section of a film with etch pits.

The severe etching in certain areas of the sapphire surface apparently is

attributed to the attack by chlorine and HC1 which are the reaction products of

the reduction of SiC14 with hydrogen. The occurence of such an etching reaction

is suggested by the improvement in the quality of the silicon layer with decreas-

ing deposition temperature and increasing concentration of the SiC14 vapor

(i. e. , increasing deposition rate). This behavior is contrary to the fact that

lower temperatures and high supersaturation ratios increase the nucleation rate

and reduce the mobility of the absorbed atoms on the substrate surface, both

of which promote polycrystallinity. The deterioration of the substrate surface
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is most severe at high temperatures. Furthermore, the quality of the silicon

layer improves markedly if a low temperature "flash" deposition proceeds the

high temperature deposition cycle. Conversely, as it was pointed out by Porter

and Wolfson (53), the quality of the silicon layers is abruptly lowered by the

introduction of HC1 vapor into the hydrogen stream with the silicon compound.

According to these authors, the use of SiHC13 seemed to improve the silicon

films, particularly at lower temperatures. SiBr 4, on the other hand, gave

results similar to SiC14.

Silicon depositions at lower temperatures, e.g. between 950 ° and 1050 ° , resulted

in films which had a smoother surface and a lower number ofl holes. In spite

of the apparent perfection of these films, they were electrically of low quality.

The films had high resistivities and low mobilities.

Figure 65 is an x-ray diffraction recording of a silicon film on an 0 ° oriented

sapphire substrate deposited with SiC14 at 1100°C. The a-AlzO 3 lines (006)

and (0.0.12) appear together with a silicon pattern which is indicative of randomly

oriented grains slightly texturized in the (111) direction. Although occasionally

better oriented films were obtained, the presented pattern can be considered as

being typical of the majority of layers grown under similar conditions.

The quality of the films apparently is governed strongly by the number of silicon

nuclei formed in the very beginning of the deposition process. Whenever the

surface can be densely covered with silicon nuclei, a coherent film may eventually

be formed during the reaction period. But if there are initially only a few

places on the substrate where a nucleation took place, the etching of the substrate

in the silicon free areas will prevent any further nucleation and hence a low

quality deposit is formed. Because of the very poor reproducibility of the SiC14

process, any study of the nucleation phenomena would require a statistical

evaluation. In view of the better results with Sill4, as described in the following

chapter, no further investigation was made with SiC14.

c) The Sill 4 Process:

The silicon depositions were performed in a vertical quartz reactor tube with

about 7.5 cm I.D. After cleaning in boiling HCf and in an ultrasonic bath with
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Photomicrograph of Sample S-187. 

on t h e  Silicon Crys ta l s  which a r e  Randomly Deposited 

on the Sapphire Substrate  Wafer. 

The Focus is 

SiC14 P r o c e s s .  

Figure 62 



Photomicrograph of Sample S-187. 

Previous Picture)  The Focus i s  on Etch Pits on the 

Sapphire Surface in one of those a r e a s  where Silicon 

did not Deposit. 

(Same a r e a  a s  

Figure 63 



• .-_,-20,a

E

a)

b)

ETCH PITS Si

c)

Figure 64



alcohol or TCE, the sapphire specimens were placed on a SiC covered carbon

pedestal which was RF heated from a coil around the reactor tube. The flow

rates in most of the runs were 15 cm3/min, of Sill4 and 20,000 cmB/min, of

hydrogen at atmospheric pressure. A typical run was made at an indicated

temperature of 9800C for 60 minutes which resulted in a 5_ thick layer. For

most of the runs, (I012) oriented substrate wafers were used as suggested by

Manasevit et. al. {50).

The silicon layers obtained by means of the Sill 4 process showed a considerable

improvement in comparison with those made with SiCl4. The films were dense,

and very often they were shiny with a mirror like surface. This indicates that

the first silicon atoms were densely and homogeneously nucleated over the whole

surface. An x-ray diffraction recording which can be considered typical for

many silicon films on sapphire substrates with the (]'012) orientation is presented

in Figure 66. Besides the (I02), (204), and (306) peaks of a-A120 3, there is

a very strong (400) and a weak (Iii) peak of silicon. The (220) reflection of

silicon coincides with the CuKf3 peak of (204) a-A120 3 which could not be sup-

pressed even ..with a Ni-filter. The pattern indicates the silicon film to be of

a strongly preferred orientation. Evidently this pattern demonstrates a consid-

erably higher film quality than the pattern in the previous Figure 65.

The recording presented in Figure 66 is typical for many of the silicon deposits

investigated. Other orientation of the sapphire besides the (To12) generally

yielded a less pronounced texturization of the silicon film.

Figure 67 is photomicrograph of a silicon film on a (T012) oriented sapphire

substrate. The film was photographed as deposited and no chemical etch was

applied. The surface of this silicon layer is comparatively smooth considering

the high magnification which was 760x. Many grains have a four fold symmetry

and they seem to be oriented with respect to each other. The photograph suggests

the (I00) growth direction to be predominate.
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Photomicrograph of Sample S- 329A. 
on a (TO1 2) Oriented Sapphire Substrate  with Indication 

of a Four-Fold  Symmetry.  

Silicon Thin-Fi lm 

Figure  67 
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: d) Electrical Measurement:

The electrical properties of a great number of silicon films were investigated

in order to obtain a quality measure of the deposited material. A 250_ wide

silicon strip was etched out and provided with evaporated and alloyed aluminum

contacts. The prepared silicon strip had the same geometry as the GaAs

specimen in Figure 57. All silicon samples turned out to be of P-type conduc-

tivity. The Hall mobility is plotted as a function of the resistivity in Figure 68

for silicon layers grown on sapphire of various crystallographic orientations

and on (100) oriented spinel employing both the SiC14 and the Sill 4 process.

For comparison, experimental points are shown for boron doped single crystal

silicon and a theoretical curve, both taken from Morin and Maita (60). Some

specimens were measured as deposited, others subjected to heat treatments

up to 10 hours at temperatures around 1150°C. Figure 68 shows that the mobility

of the samples investigated has a distribution from very low values to those of

single crystal material. The graph clearly indicates the superiority of the

Sill 4 process since the samples with the lower values of mobility are made

mostly with SiC14. The arrows in Figure 68 refer to heat treatments. Any

annealing decreases the resistivity and increases the carrier concentration and

it generally improves the hole mobility of the samples. The increasing in dop-

ing concentration is also always observed with higher pedestal temperature

during the growth of the film. The annealing cycles cause aluminum to diffuse

from the substrate into the silicon layer (58).

The Halt mobility of 4 single crystal silicon samples and of 6 silicon on sapphire

samples is plotted versus temperature in Figure 69. Above 300°C the mobilities

of the high quality films approach the values of single crystal material and

follow the well established temperature relation of _ N T -5/z. The effect of
/

the defect structure of the silicon films grown on sapphire is very pronounced at

the temperatures where impurity scattering normally dominates the lattice

scattering. An average defect density can be estimated by comparing sample

266B with_specimen MM141 and MM! !9 in Figure 69. Although sample 266B
16 -Z

has a carrier concentration of about 5 x 10 cm at room temperature, it
t7 -3

behaves like a material doped with a concentration between 10 cm and

1018 -3cm . It is therefore estimated, that the defect density is around 5 x 1017crn -
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and the mobility below about 200°K is mainly determined by defect center scatter-

ing. The electrical parameters of all the samples presented in Figure 69 are

summarized in Table III for comparison.

e) Silicon Film Structure:

The diffractometer recording, shown in Figure 66, reveals a pattern very

similar to that of a single crystal material. The electrical measurements

however, presented in Figure 68 and 69 and in Table I_II do suggest, that the

silicon films are not of true single crystal nature and incorporate a certain

defect structure. The lowering of the Hall mobility below the value of single

crystal material of equivalent impurity concentration, is caused by these defect

centers. To clarify the morphology of the films, several samples were in-

vestigated with the electron microscope by reflection diffraction techniques.

This evaluation indicated that good films do consist of large single crystal

areas. Figure 70 is an example of the results obtained with the electron micro-

scope. Figure 71 indicates twinning in the grown film which is observed quite

fro quently.

The structure of these heteroepitaxial films can be easily understood by examin-

ing Figure 72. This figure shows a hypothetical system of the substrate-to-

film interface, where four atoms of the substrate correspond to three atoms of

the layer. We assume that two nuclei were formed initially, one at the left

and one at the right side of the picture. As the nuclei grow, an oriented film

is formed on the substrate. A lattice mismatch is generated at the interface,

where the crystallites join due to the lateral growth. When the structure of a

silicon layer on a (1012) oriented sapphire wafer is constructed it might look

like the sketch in Figure 73. The (001) direction of the silicon areas are all

oriented parallel and perpendicular to the surface. The (100) directions are

parallel as well. Between the single crystalline areas are the enlarged trans-

lation boundaries. It should be noted that such a fi!nn has a much higher degree

of preferred orientation than, for example, a CdS film on a flat substrate where

the c-axis of all crystal!ites are parallel, but the a-axis are randomly oriented.

The translation boundary presents a severe distortion of the lattice and this
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TABEL HI

Sample No. Re sistivity
(_" cm)

Carrier Concentration

(cm _-3)
D opant Hall Mobility

(cmZ/V- sec.
at 300°K)

MM 127

MM119

MM 141

MM 125

266 B

266 C

290 C

22 B

51D

44 B

25.0

0.14

0.05

0. 007

0.43

1.2

5.5

2.7

38.0

142.0

14
7.0x 10

17
2.0x 10

1 x 1018

1.5 x 1019

16
5.4xi0

16
1.3xlO

16
8.5xi0

16
3.1 xlO

3.7xlO 15

15
4xlO

Boron

Boron

Boron

Boron

Aluminum

Aluminum

Aluminum

Aluminum

Aluminum

Aluminum

350

220

150

55

265

300

132

72

45

11



probably is the origin of the numerous scattering centers. For this reason

the mobility at low temperature is affected predominantly by defect center

scattering in addition to the normal impurity scattering due to the ionized

impur itie s.

One would expect that the translation boundaries exhibited a much lower re-

sistance to a chemical etch than the surrounding single crystal silicon material.

A result of an etch study is illustrated in Figure 74. The photograph shows

a polished and etched silicon film on (100) oriented spinel where a pattern of

lines intersect at right angles. The pattern verifies the hypothetical picture

of Figure 73. Assuming that the clark lines indeed represent the translation

boundaries, the single crystal areas would be between 1 and 10_ in transverse

dimensions.

Although the growth parameters for most of the samples made with the Sill 4

process were practically the same, the electrical parameters varied over a

considerable range. The reason for this spread is not well established, but

it seems that the original nucleation is extremely sensitive to even a minute

variation of one or more of the many experimental parameters, which are:

precision of crystallographic orientation and crystalline perfection of the sub-

strate, molten salt or gas etch of the sapphire, pedestal temperature, hydrogen

flow rate and flow pattern, concentration of Sill 4, and the geometry of the

reaction tube. More investigations are necessary in order to establish a still

better reproducibility of the process.
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(100) Spinel with Polished and Etched Silicon F i lm 

Showing Feu: -Fold Symmetry. 

Figure 74 


